Bageshwar Umesh K, Musser Siegfried M
Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.
J Cell Biol. 2007 Oct 8;179(1):87-99. doi: 10.1083/jcb.200702082. Epub 2007 Oct 1.
The twin-arginine translocation (Tat) pathway in Escherichia coli transports fully folded and assembled proteins across the energy-transducing periplasmic membrane. In chloroplasts, Tat transport requires energy input only from the proton motive force. To elucidate the mechanism and energetics of bacterial Tat protein transport, we developed an efficient in vitro transport assay using TatABC-enriched inverted membrane vesicles and the physiological precursor pre-SufI. We report transport efficiencies of 60-80% for nanomolar pre-SufI concentrations. Dissipation of the pH gradient does not reduce pre-SufI transport efficiency. Instead, pre-SufI transport requires at least two electrical potential (Deltapsi)-dependent steps that differ in both the duration and minimum magnitude of the required Deltapsi. The data are consistent with a model in which a substantial Deltapsi of short duration is required for an early transport step, and in which a small Deltapsi of long duration is necessary to drive a later transport step.
大肠杆菌中的双精氨酸转运(Tat)途径可将完全折叠和组装好的蛋白质转运穿过进行能量转换的周质膜。在叶绿体中,Tat转运仅需要质子动力提供能量输入。为阐明细菌Tat蛋白转运的机制和能量学,我们利用富含TatABC的内膜囊泡和生理性前体蛋白前体SufI开发了一种高效的体外转运检测方法。我们报告了纳摩尔浓度的前体SufI的转运效率为60%-80%。pH梯度的消散不会降低前体SufI的转运效率。相反,前体SufI的转运至少需要两个依赖跨膜电位(ΔΨ)的步骤,这两个步骤在所需ΔΨ的持续时间和最小幅度上均有所不同。这些数据与一个模型一致,即在早期转运步骤中需要持续时间短的较大ΔΨ,而在后期转运步骤中需要持续时间长的较小ΔΨ来驱动。