Stepanenko Svetlana, Engels Bernd
Institut für Organische Chemie, Institut für Chemie, Universität Würzburg, Am Hubland, D-97070 Würzburg.
J Comput Chem. 2008 Apr 15;29(5):768-80. doi: 10.1002/jcc.20830.
The study presents two new nonlinear global optimization routines; the Gradient Only Tabu Search (GOTS) and the Tabu Search with Powell's Algorithm (TSPA). They are based on the Tabu-Search strategy, which tries to determine the global minimum of a function by the steepest descent-mildest ascent strategy. The new algorithms are explained and their efficiency is compared with other approaches by determining the global minima of various well-known test functions with varying dimensionality. These tests show that for most tests the GOTS possesses a much faster convergence than global optimizer taken from the literature. The efficiency of the TSPA compares to the efficiency of genetic algorithms.
该研究提出了两种新的非线性全局优化程序;仅梯度禁忌搜索(GOTS)和带鲍威尔算法的禁忌搜索(TSPA)。它们基于禁忌搜索策略,该策略试图通过最速下降 - 最缓上升策略来确定函数的全局最小值。文中对新算法进行了解释,并通过确定不同维度的各种著名测试函数的全局最小值,将它们的效率与其他方法进行了比较。这些测试表明,对于大多数测试,GOTS的收敛速度比文献中的全局优化器快得多。TSPA的效率与遗传算法的效率相当。