Boucherat Olivier, Franco-Montoya Marie-Laure, Thibault Christelle, Incitti Roberto, Chailley-Heu Bernadette, Delacourt Christophe, Bourbon Jacques R
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 841, Institut Mondor de Recherche Biomédicale (IMRB), Département de Biologie et Thérapeutiques Cardiorespiratoires et Hépatiques, Créteil, France.
Physiol Genomics. 2007 Dec 19;32(1):128-41. doi: 10.1152/physiolgenomics.00108.2007. Epub 2007 Oct 2.
Little is known about the molecular basis of lung alveolarization. We used a microarray profiling strategy to identify novel genes that may regulate the secondary septation process. Rat lung fibroblasts were extemporaneously isolated on postnatal days 2, 7, and 21, i.e., before, during, and after septation, respectively. Total RNA was extracted, and cRNAs were hybridized to Affymetrix rat genome 230 2.0 microarrays. Expression levels of a selection of genes were confirmed by real-time PCR. In addition to genes already known to be upregulated during alveolarization including drebrin, midkine, Fgfr3, and Fgfr4, the study allowed us to identify two remarkable groups of genes with opposite profiles, i.e., gathering genes either transiently up- or downregulated on day 7. The former group includes the transcription factors retinoic acid receptor (RXR)-gamma and homeobox (Hox) a2, a4, and a5 and genes involved in Wnt signaling (Wnt5a, Fzd1, and Ndp); the latter group includes the extracellular matrix components Comp and Opn and the signal molecule Slfn4. Profiling in whole lung from fetal life to adulthood confirmed that changes were specific for alveolarization. Two treatments that arrest septation, hyperoxia and dexamethasone, inhibited the expression of genes that are upregulated during alveolarization and conversely enhanced that of genes weakly expressed during alveolarization and upregulated thereafter. The possible roles of these genes in secondary septation are discussed. Gene expression profiling analysis on freshly isolated cells represents a powerful approach to provide new information about differential regulation of genes during alveolarization and pathways potentially involved in the pathogenesis of bronchopulmonary dysplasia.
关于肺泡化的分子基础,人们了解甚少。我们采用微阵列分析策略来鉴定可能调控次级分隔过程的新基因。分别在出生后第2天、第7天和第21天,即分隔前、分隔期间和分隔后,即时分离大鼠肺成纤维细胞。提取总RNA,并将cRNA与Affymetrix大鼠基因组230 2.0微阵列杂交。通过实时PCR确认了所选基因的表达水平。除了已知在肺泡化过程中上调的基因,包括脑肌动蛋白结合蛋白、中期因子、成纤维细胞生长因子受体3(Fgfr3)和成纤维细胞生长因子受体4(Fgfr4)外,该研究还使我们鉴定出两组具有相反表达谱的显著基因,即在第7天瞬时上调或下调的基因。前一组包括转录因子视黄酸受体(RXR)-γ和同源框(Hox)a2、a4和a5以及参与Wnt信号通路的基因(Wnt5a、Fzd1和Ndp);后一组包括细胞外基质成分软骨寡聚基质蛋白(Comp)和骨桥蛋白(Opn)以及信号分子Schlafen 4(Slfn4)。从胎儿期到成年期对全肺进行的分析证实,这些变化是肺泡化所特有的。两种阻止分隔的处理方法,即高氧和地塞米松,抑制了在肺泡化过程中上调的基因的表达,反之增强了在肺泡化过程中弱表达并在其后上调的基因的表达。讨论了这些基因在次级分隔中的可能作用。对新鲜分离细胞进行的基因表达谱分析是一种强大的方法,可提供有关肺泡化过程中基因差异调控以及可能参与支气管肺发育不良发病机制的信号通路的新信息。