Suppr超能文献

早期产后内毒素暴露对小鼠发育中肺的影响。

Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice.

机构信息

Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas.

Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine , Houston, Texas.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L229-L244. doi: 10.1152/ajplung.00560.2017. Epub 2018 Oct 11.

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants that is characterized by interrupted lung development. Postnatal sepsis causes BPD, yet the contributory mechanisms are unclear. To address this gap, studies have used lipopolysaccharide (LPS) during the alveolar phase of lung development. However, the lungs of infants who develop BPD are still in the saccular phase of development, and the effects of LPS during this phase are poorly characterized. We hypothesized that chronic LPS exposure during the saccular phase disrupts lung development by mechanisms that promote inflammation and prevent optimal lung development and repair. Wild-type C57BL6J mice were intraperitoneally administered 3, 6, or 10 mg/kg of LPS or a vehicle once daily on postnatal days (PNDs) 3-5. The lungs were collected for proteomic and genomic analyses and flow cytometric detection on PND6. The impact of LPS on lung development, cell proliferation, and apoptosis was determined on PND7. Finally, we determined differences in the LPS effects between the saccular and alveolar lungs. LPS decreased the survival and growth rate and lung development in a dose-dependent manner. These effects were associated with a decreased expression of proteins regulating cell proliferation and differentiation and increased expression of those mediating inflammation. While the lung macrophage population of LPS-treated mice increased, the T-regulatory cell population decreased. Furthermore, LPS-induced inflammatory and apoptotic response and interruption of cell proliferation and alveolarization was greater in alveolar than in saccular lungs. Collectively, the data support our hypothesis and reveal several potential therapeutic targets for sepsis-mediated BPD in infants.

摘要

支气管肺发育不良(BPD)是一种婴儿慢性肺部疾病,其特征为肺发育中断。出生后败血症会导致 BPD,但促成机制尚不清楚。为解决这一差距,研究人员在肺发育的肺泡阶段使用脂多糖(LPS)。然而,发生 BPD 的婴儿的肺部仍处于囊泡发育阶段,LPS 在该阶段的作用尚未得到充分描述。我们假设,囊泡阶段的慢性 LPS 暴露通过促进炎症和阻止最佳肺发育和修复的机制来破坏肺发育。将野生型 C57BL6J 小鼠腹膜内给予 3、6 或 10 mg/kg LPS 或载体,每天一次,在出生后第 3-5 天。在出生后第 6 天收集肺进行蛋白质组学和基因组学分析以及流式细胞术检测。在出生后第 7 天确定 LPS 对肺发育、细胞增殖和细胞凋亡的影响。最后,我们确定了 LPS 在囊泡和肺泡肺之间的作用差异。LPS 以剂量依赖性方式降低存活率和生长速率以及肺发育。这些作用与调节细胞增殖和分化的蛋白质表达减少以及介导炎症的蛋白质表达增加有关。虽然 LPS 处理小鼠的肺巨噬细胞群增加,但 T 调节细胞群减少。此外,LPS 诱导的炎症和细胞凋亡反应以及细胞增殖和肺泡化中断在肺泡中比在囊泡中更为严重。总之,数据支持我们的假设,并揭示了几种针对婴儿败血症介导的 BPD 的潜在治疗靶点。

相似文献

1
Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice.
Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L229-L244. doi: 10.1152/ajplung.00560.2017. Epub 2018 Oct 11.
2
Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs.
Am J Physiol Lung Cell Mol Physiol. 2020 Dec 1;319(6):L981-L996. doi: 10.1152/ajplung.00013.2020. Epub 2020 Sep 9.
3
Adrenomedullin Deficiency Potentiates Lipopolysaccharide-Induced Experimental Bronchopulmonary Dysplasia in Neonatal Mice.
Am J Pathol. 2021 Dec;191(12):2080-2090. doi: 10.1016/j.ajpath.2021.09.001. Epub 2021 Sep 9.
4
CCR2 Mediates Chronic LPS-Induced Pulmonary Inflammation and Hypoalveolarization in a Murine Model of Bronchopulmonary Dysplasia.
Front Immunol. 2020 Oct 6;11:579628. doi: 10.3389/fimmu.2020.579628. eCollection 2020.
5
Effect of Intranasal Instillation of Lipopolysaccharide on Lung Development and Its Related Mechanism in Newborn Mice.
J Interferon Cytokine Res. 2019 Nov;39(11):684-693. doi: 10.1089/jir.2019.0006. Epub 2019 Jul 3.
6
Activation of the nuclear factor-κB pathway during postnatal lung inflammation preserves alveolarization by suppressing macrophage inflammatory protein-2.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 15;309(6):L593-604. doi: 10.1152/ajplung.00029.2015. Epub 2015 Jul 10.
7
Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
J Appl Physiol (1985). 2010 May;108(5):1347-56. doi: 10.1152/japplphysiol.01392.2009. Epub 2010 Mar 11.
8
Angiopoietin-1 protects against endotoxin-induced neonatal lung injury and alveolar simplification in mice.
Pediatr Res. 2022 May;91(6):1405-1415. doi: 10.1038/s41390-021-01544-0. Epub 2021 May 12.
10
Effects of postnatal dexamethasone or hydrocortisone in a rat model of antenatal lipopolysaccharide and neonatal hyperoxia exposure.
J Korean Med Sci. 2012 Apr;27(4):395-401. doi: 10.3346/jkms.2012.27.4.395. Epub 2012 Mar 21.

引用本文的文献

1
2
Amphiregulin Exerts Proangiogenic Effects in Developing Murine Lungs.
Antioxidants (Basel). 2024 Jan 8;13(1):78. doi: 10.3390/antiox13010078.
5
Bronchopulmonary Dysplasia: Pathogenesis and Pathophysiology.
J Clin Med. 2023 Jun 22;12(13):4207. doi: 10.3390/jcm12134207.
7
The SARS-CoV-2 E protein induces Toll-like receptor 2-mediated neonatal lung injury in a model of COVID-19 viremia that is rescued by the glucocorticoid ciclesonide.
Am J Physiol Lung Cell Mol Physiol. 2023 May 1;324(5):L722-L736. doi: 10.1152/ajplung.00410.2022. Epub 2023 Mar 28.
9
Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis?
Front Immunol. 2022 Feb 25;13:829210. doi: 10.3389/fimmu.2022.829210. eCollection 2022.
10
Postnatal Sepsis and Bronchopulmonary Dysplasia in Premature Infants: Mechanistic Insights into "New BPD".
Am J Respir Cell Mol Biol. 2022 Feb;66(2):137-145. doi: 10.1165/rcmb.2021-0353PS.

本文引用的文献

1
Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis.
Am J Physiol Lung Cell Mol Physiol. 2018 Apr 1;314(4):L544-L554. doi: 10.1152/ajplung.00521.2017. Epub 2018 Jan 4.
2
The economic impact of prematurity and bronchopulmonary dysplasia.
Eur J Pediatr. 2017 Dec;176(12):1587-1593. doi: 10.1007/s00431-017-3009-6. Epub 2017 Sep 9.
3
Stereological monitoring of mouse lung alveolarization from the early postnatal period to adulthood.
Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L882-L895. doi: 10.1152/ajplung.00492.2016. Epub 2017 Mar 17.
4
Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia.
Dis Model Mech. 2017 Feb 1;10(2):185-196. doi: 10.1242/dmm.027086. Epub 2016 Dec 14.
5
Interdisciplinary Care of Children with Severe Bronchopulmonary Dysplasia.
J Pediatr. 2017 Feb;181:12-28.e1. doi: 10.1016/j.jpeds.2016.10.082. Epub 2016 Nov 28.
6
Influence of own mother's milk on bronchopulmonary dysplasia and costs.
Arch Dis Child Fetal Neonatal Ed. 2017 May;102(3):F256-F261. doi: 10.1136/archdischild-2016-310898. Epub 2016 Nov 2.
7
Chorioamnionitis and subsequent bronchopulmonary dysplasia in very-low-birth weight infants: a 25-year cohort.
J Perinatol. 2016 Dec;36(12):1045-1048. doi: 10.1038/jp.2016.138. Epub 2016 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验