Tian Xianbin, Zamek-Gliszczynski Maciej J, Li Jun, Bridges Arlene S, Nezasa Ken-ichi, Patel Nita J, Raub Thomas J, Brouwer Kim L R
School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Drug Metab Dispos. 2008 Jan;36(1):61-4. doi: 10.1124/dmd.107.017319. Epub 2007 Oct 3.
Previous studies implicated P-glycoprotein (P-gp) as the major transport protein responsible for the biliary excretion of fexofenadine (FEX). However, FEX biliary excretion was not impaired in P-gp- or breast cancer resistance protein (Bcrp)-knockout mice or multidrug resistance-associated protein 2 (Mrp2)-deficient rats. The present study tested the hypothesis that species differences exist in the transport protein primarily responsible for FEX biliary excretion between mice and rats. Livers from Mrp2-knockout (Mrp2KO) mice and Mrp2-deficient (TR(-)) rats were perfused in a single-pass manner with 0.5 muM FEX. N-(4-[2-(1,2,3,4-Tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) (10 muM) was employed to inhibit P-gp and Bcrp. The biliary excretion rate of FEX was decreased 85% in Mrp2KO relative to wild-type mice (18.4 +/- 2.2 versus 122 +/- 34 pmol/min/g liver). In mice, more than 50% of FEX unbound intrinsic biliary clearance (CL(bile, int)(') = 3.0 ml/h/g liver) could be attributed to Mrp2 (Mrp2-dependent CL(bile, int)(') approximately 1.7 ml/h/g liver), with P-gp and Bcrp playing a minor role (P-gp- and Bcrp-dependent CL(bile, int)(') approximately 0.3 ml/h/g liver). Approximately one third of FEX CL(bile, int)(') was attributed to unidentified mechanisms in mice. In contrast to mice, FEX biliary excretion rate (245 +/- 38 and 250 +/- 25 pmol/min/g liver) and CL(bile, int)(') (9.72 +/- 2.47 and 6.49 +/- 0.68 ml/h/g liver) were comparable between TR(-) and control Wistar rats, respectively, suggesting that unidentified transport mechanism(s) can completely compensate for the loss of Mrp2 function in rats. Mrp2 clearly plays a major role in FEX biliary excretion in mice. In conclusion, remarkable species differences exist in FEX hepatobiliary transport mechanisms.
先前的研究表明,P-糖蛋白(P-gp)是负责非索非那定(FEX)胆汁排泄的主要转运蛋白。然而,在P-gp基因敲除小鼠、乳腺癌耐药蛋白(Bcrp)基因敲除小鼠或多药耐药相关蛋白2(Mrp2)缺陷大鼠中,FEX的胆汁排泄并未受损。本研究验证了以下假设:在小鼠和大鼠之间,主要负责FEX胆汁排泄的转运蛋白存在种属差异。以单次灌注的方式,用0.5 μM的FEX灌注Mrp2基因敲除(Mrp2KO)小鼠和Mrp2缺陷(TR(-))大鼠的肝脏。使用N-(4-[2-(1,2,3,4-四氢-6,7-二甲氧基-2-异喹啉基)乙基]-苯基)-9,10-二氢-5-甲氧基-9-氧代-4-吖啶甲酰胺(GF120918)(10 μM)抑制P-gp和Bcrp。与野生型小鼠相比,Mrp2KO小鼠中FEX的胆汁排泄率降低了85%(分别为18.4±2.2与122±34 pmol/min/g肝脏)。在小鼠中,超过50%的FEX非结合固有胆汁清除率(CL(bile, int)' = 3.0 ml/h/g肝脏)可归因于Mrp2(Mrp2依赖性CL(bile, int)'约为1.7 ml/h/g肝脏),P-gp和Bcrp起次要作用(P-gp和Bcrp依赖性CL(bile, int)'约为0.3 ml/h/g肝脏)。在小鼠中,约三分之一的FEX CL(bile, int)'归因于不明机制。与小鼠相反,TR(-)大鼠和对照Wistar大鼠之间FEX的胆汁排泄率(分别为245±38和250±25 pmol/min/g肝脏)和CL(bile, int)'(分别为9.72±2.47和6.49±0.68 ml/h/g肝脏)具有可比性,这表明不明转运机制可以完全补偿大鼠中Mrp2功能的丧失。Mrp2在小鼠FEX胆汁排泄中显然起主要作用。总之,FEX肝胆转运机制存在显著的种属差异。