University of Kentucky, Graduate Center for Toxicology, Lexington, KY 40536-0305, USA.
Drug Metab Dispos. 2010 Oct;38(10):1723-30. doi: 10.1124/dmd.110.033480. Epub 2010 Jul 19.
Tetrahydroxy bile acids become major biliary bile acids in Bsep(-/-) mice and Fxr(-/-) mice fed cholic acid; we characterized disposition of these novel bile acids that also occur in patients with cholestasis. We investigated mouse Mrp2 (mMrp2) and P-glycoprotein [(P-gp) mMdr1a]-mediated transport of a tetrahydroxy bile acid, 6α-OH-taurocholic acid (6α-OH-TC), and its biliary excretion in wild-type and Mrp2(-/-) mice in the presence or absence of N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), a P-gp and breast cancer resistance protein inhibitor. 6α-OH-TC was rapidly excreted into bile of wild-type mice (78% recovery); coinfusion of GF120918 had no significant effect. In Mrp2(-/-) mice, biliary excretion was decreased (52% recovery) and coinfusion of GF120918 further decreased these values (34% recovery). In wild-type, but not Mrp2(-/-), mice, 6α-OH-TC increased bile flow 2.5-fold. Membrane vesicle transport studies of 6α-OH-TC (0.05-0.75 mM) yielded saturation kinetics with a higher apparent affinity for mMrp2 (K(m) = 0.13 mM) than for mMdr1a (K(m) = 0.33 mM); mBsep transported 6α-OH-TC with positive cooperativity (Hill slope = 2.1). Human multidrug resistance-associated protein (MRP) 2 and P-gp also transported 6α-OH-TC but with positive cooperativity (Hill slope = 3.6 and 1.6, respectively). After intraileal administration, the time course of 6α-OH-TC biliary recovery was similar to that of coinfused taurocholate, implying that 6α-OH-TC can undergo enterohepatic cycling. Thus, Mrp2 plays a key role in 6α-OH-TC biliary excretion, whereas P-glycoprotein plays a secondary role; Bsep likely mediates excretion of 6α-OH-TC in the absence of Mrp2 and P-gp. In Bsep(-/-) mice, efficient synthesis of tetrahydroxy bile acids that are Mrp2 and P-gp substrates can explain the noncholestatic phenotype.
四羟基胆酸在 Bsep(-/-) 小鼠和给予胆酸的 Fxr(-/-) 小鼠中成为主要的胆汁胆酸;我们描述了这些也发生在胆汁淤积患者中的新型胆酸的处置。我们研究了小鼠 Mrp2(mMrp2)和 P-糖蛋白[(P-gp)mMdr1a]介导的四羟基胆酸 6α-OH-牛磺胆酸(6α-OH-TC)的转运及其在野生型和 Mrp2(-/-) 小鼠中的胆汁排泄,在存在或不存在 N-(4-[2-(1,2,3,4-四氢-6,7-二甲氧基-2-异喹啉基)乙基]苯基)-9,10-二氢-5-甲氧基-9-氧代-4-吖啶羧酸酰胺(GF120918)的情况下,GF120918 是一种 P-糖蛋白和乳腺癌耐药蛋白抑制剂。6α-OH-TC 迅速排泄到野生型小鼠的胆汁中(78%回收);共输注 GF120918 没有显着影响。在 Mrp2(-/-) 小鼠中,胆汁排泄减少(52%回收),共输注 GF120918 进一步降低了这些值(34%回收)。在野生型,但不是 Mrp2(-/-),小鼠中,6α-OH-TC 使胆汁流量增加了 2.5 倍。6α-OH-TC(0.05-0.75 mM)的膜囊泡转运研究产生了饱和动力学,对 mMrp2 的表观亲和力更高(K(m) = 0.13 mM)而不是对 mMdr1a(K(m) = 0.33 mM);mBsep 以正协同性转运 6α-OH-TC(Hill 斜率 = 2.1)。人多药耐药相关蛋白(MRP)2 和 P-糖蛋白也转运 6α-OH-TC,但具有正协同性(Hill 斜率分别为 3.6 和 1.6)。经回肠内给药后,6α-OH-TC 胆汁回收的时间过程与共输注的牛磺胆酸盐相似,表明 6α-OH-TC 可以进行肠肝循环。因此,Mrp2 在 6α-OH-TC 的胆汁排泄中起关键作用,而 P-糖蛋白起次要作用;Bsep 可能在没有 Mrp2 和 P-糖蛋白的情况下介导 6α-OH-TC 的排泄。在 Bsep(-/-) 小鼠中,四羟基胆酸的有效合成是 Mrp2 和 P-糖蛋白的底物,可以解释非胆汁淤积表型。