Whisson Stephen C, Boevink Petra C, Moleleki Lucy, Avrova Anna O, Morales Juan G, Gilroy Eleanor M, Armstrong Miles R, Grouffaud Severine, van West Pieter, Chapman Sean, Hein Ingo, Toth Ian K, Pritchard Leighton, Birch Paul R J
Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
Nature. 2007 Nov 1;450(7166):115-8. doi: 10.1038/nature06203. Epub 2007 Sep 30.
Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.
细菌、卵菌和真菌植物病原体通过将效应蛋白转运到宿主细胞中来引发疾病,在宿主细胞中它们可能直接操控宿主的固有免疫。在细菌中,转运是通过III型分泌系统进行的,但在真菌和卵菌中,效应蛋白递送的类似过程尚未得到表征。在这里,我们报告了卵菌易位效应蛋白中存在的两个基序RXLR和EER的功能分析。我们使用含有疫霉属RXLR-EER的蛋白Avr3a作为转运的报告蛋白,因为它在含有R3a抗性蛋白的植物细胞内被识别后会引发不依赖RXLR-EER的超敏细胞死亡。我们表明,无论有无RXLR-EER基序,Avr3a都从疫霉属的活体营养结构吸器中分泌出来,这表明这些基序对于靶向吸器或分泌并非必需。然而,用丙氨酸残基单独或组合替换Avr3a的RXLR-EER基序,或者用代表保守蛋白质物理化学性质变化的KMIK-DDK残基替换后,疫霉无法将Avr3a或Avr3a-GUS融合蛋白递送到植物细胞中,这表明这些基序是转运所必需的。我们表明,编码RXLR-EER的基因在感染期间转录上调。生物信息学分析在疫霉基因组中鉴定出425个潜在的编码分泌型RXLR-EER类蛋白的基因。这类蛋白的鉴定为确定卵菌如何操控宿主以建立感染提供了无与伦比的机会。