Suppr超能文献

腺苷钴胺素依赖性二醇和甘油脱水酶再激活因子特异性的分子基础。

Molecular basis for specificities of reactivating factors for adenosylcobalamin-dependent diol and glycerol dehydratases.

作者信息

Kajiura Hideki, Mori Koichi, Shibata Naoki, Toraya Tetsuo

机构信息

Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Japan.

出版信息

FEBS J. 2007 Nov;274(21):5556-66. doi: 10.1111/j.1742-4658.2007.06074.x. Epub 2007 Oct 4.

Abstract

Adenosylcobalamin-dependent diol and glycerol dehydratases are isofunctional enzymes and undergo mechanism-based inactivation by a physiological substrate glycerol during catalysis. Inactivated holoenzymes are reactivated by their own reactivating factors that mediate the ATP-dependent exchange of an enzyme-bound, damaged cofactor for free adenosylcobalamin through intermediary formation of apoenzyme. The reactivation takes place in two steps: (a) ADP-dependent cobalamin release and (b) ATP-dependent dissociation of the resulting apoenzyme-reactivating factor complexes. The in vitro experiments with purified proteins indicated that diol dehydratase-reactivating factor (DDR) cross-reactivates the inactivated glycerol dehydratase, whereas glycerol dehydratase-reactivating factor (GDR) did not cross-reactivate the inactivated diol dehydratase. We investigated the molecular basis of their specificities in vitro by using purified preparations of cognate and noncognate enzymes and reactivating factors. DDR mediated the exchange of glycerol dehydratase-bound cyanocobalamin for free adeninylpentylcobalamin, whereas GDR cannot mediate the exchange of diol dehydratase-bound cyanocobalamin for free adeninylpentylcobalamin. As judged by denaturing PAGE, the glycerol dehydratase-DDR complex was cross-formed, although the diol dehydratase-GDR complex was not formed. There were no specificities of reactivating factors in the ATP-dependent dissociation of enzyme-reactivating factor complexes. Thus, it is very likely that the specificities of reactivating factors are determined by the capability of reactivating factors to form complexes with apoenzymes. A modeling study based on the crystal structures of enzymes and reactivating factors also suggested why DDR cross-forms a complex with glycerol dehydratase, and why GDR does not cross-form a complex with diol dehydratase.

摘要

腺苷钴胺素依赖性二醇脱水酶和甘油脱水酶是同功能酶,在催化过程中会被生理底物甘油进行基于机制的失活。失活的全酶可被其自身的再激活因子重新激活,这些再激活因子通过脱辅基酶的中间形成介导与酶结合的受损辅因子与游离腺苷钴胺素进行依赖ATP的交换。再激活过程分两步进行:(a)依赖ADP的钴胺素释放和(b)依赖ATP的所得脱辅基酶 - 再激活因子复合物的解离。用纯化蛋白进行的体外实验表明,二醇脱水酶再激活因子(DDR)可使失活的甘油脱水酶交叉再激活,而甘油脱水酶再激活因子(GDR)不能使失活的二醇脱水酶交叉再激活。我们通过使用同源和非同源酶及再激活因子的纯化制剂,在体外研究了它们特异性的分子基础。DDR介导甘油脱水酶结合的氰钴胺与游离腺苷戊基钴胺的交换,而GDR不能介导二醇脱水酶结合的氰钴胺与游离腺苷戊基钴胺的交换。通过变性聚丙烯酰胺凝胶电泳判断,甘油脱水酶 - DDR复合物交叉形成,而二醇脱水酶 - GDR复合物未形成。在酶 - 再激活因子复合物的依赖ATP的解离中,再激活因子没有特异性。因此,再激活因子的特异性很可能是由再激活因子与脱辅基酶形成复合物的能力决定的。基于酶和再激活因子晶体结构的建模研究也表明了为什么DDR与甘油脱水酶交叉形成复合物,以及为什么GDR不与二醇脱水酶交叉形成复合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验