Miranda-Moreno Luis F, Labbe Aurélie, Fu Liping
Centre for Data and Analysis in Transportation, Economics Department, Université Laval, Québec G1K7P4, Canada.
Accid Anal Prev. 2007 Nov;39(6):1192-201. doi: 10.1016/j.aap.2007.03.008. Epub 2007 Apr 17.
Ranking a group of candidate sites and selecting from it the high-risk locations or hotspots for detailed engineering study and countermeasure evaluation is the first step in a transport safety improvement program. Past studies have however mainly focused on the task of applying appropriate methods for ranking locations, with few focusing on the issue of how to define selection methods or threshold rules for hotspot identification. The primary goal of this paper is to introduce a multiple testing-based approach to the problem of selecting hotspots. Following the recent developments in the literature, two testing procedures are studied under a Bayesian framework: Bayesian test with weights (BTW) and a Bayesian test controlling for the posterior false discovery rate (FDR) or false negative rate (FNR). The hypotheses tests are implemented on the basis of two random effect or Bayesian models, namely, the hierarchical Poisson/Gamma or Negative Binomial model and the hierarchical Poisson/Lognormal model. A dataset of highway-railway grade crossings is used as an application example to illustrate the proposed procedures incorporating both the posterior distribution of accident frequency and the posterior distribution of ranks. Results on the effects of various decision parameters used in hotspot identification procedures are discussed.
对一组候选地点进行排名,并从中选择高风险地点或热点区域进行详细的工程研究和对策评估,是运输安全改进计划的第一步。然而,过去的研究主要集中在应用适当方法对地点进行排名的任务上,很少关注如何定义热点识别的选择方法或阈值规则的问题。本文的主要目标是引入一种基于多重检验的方法来解决热点选择问题。随着文献的最新发展,在贝叶斯框架下研究了两种检验程序:加权贝叶斯检验(BTW)和控制后验错误发现率(FDR)或错误阴性率(FNR)的贝叶斯检验。假设检验是基于两个随机效应或贝叶斯模型实施的,即分层泊松/伽马或负二项模型以及分层泊松/对数正态模型。以公路铁路平交道口数据集作为应用示例,来说明所提出的程序,该程序结合了事故频率的后验分布和排名的后验分布。讨论了热点识别程序中使用的各种决策参数的影响结果。