Rutgers Intelligent Transportation Systems Laboratory, Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, 623 Bowser Rd., Piscataway, NJ 08854, USA.
Accid Anal Prev. 2010 Nov;42(6):2099-107. doi: 10.1016/j.aap.2010.06.023. Epub 2010 Aug 2.
This paper develops a step-by-step methodology for the application of Full Bayes (FB) approach for before-and-after analysis of road safety countermeasures. As part of this methodology, it studies the posterior prediction capability of Bayesian approaches and their use in crash reduction factor (CRF) estimation. A collection of candidate models are developed to investigate the impacts of different countermeasures on road safety when limited data are available. The candidate models include traditional, random effects, non-hierarchical and hierarchical Poisson-Gamma and Poisson-Lognormal (P-LN) distributions. The use of random effects and hierarchical model structures allows treatment of the data in a time-series cross-section panel, and deal with the spatial and temporal effects in the data. Next, the proposed FB estimation methodology is applied to urban roads in New Jersey to investigate the impacts of different treatment measures on the safety of "urban collectors and arterial roads" with speed limits less than 45 mph. The treatment types include (1) increase in lane width, (2) installation of median barriers, (3) vertical and horizontal improvements in the road alignment; and (4) installation of guide rails. The safety performance functions developed via different model structures show that random effects hierarchical P-LN models with informative hyper-priors perform better compared with other model structures for each treatment type. The individual CRF values are also found to be consistent across the road sections, with all showing a decrease in crash rates after the specific treatment except guide rail installation treatment. The highest decrease in the crash rate is observed after the improvement in vertical and horizontal alignment followed by increase in lane width and installation of median barriers. Overall statistical analyses of the results obtained from different candidate models show that when limited data are available, P-LN model structure combined with higher levels of hierarchy and informative priors may reduce the biases in model parameters resulting in more robust estimates.
本文开发了一种逐步的方法,用于将全贝叶斯(FB)方法应用于道路安全措施的前后分析。作为该方法的一部分,它研究了贝叶斯方法的后验预测能力及其在碰撞减少因子(CRF)估计中的应用。本文开发了一系列候选模型,以研究在数据有限的情况下,不同措施对道路安全的影响。候选模型包括传统、随机效应、非层次和层次泊松-伽马和泊松-对数正态(P-LN)分布。随机效应和层次模型结构的使用允许在时间序列横截面面板中处理数据,并处理数据中的空间和时间效应。接下来,将提出的 FB 估计方法应用于新泽西州的城市道路,以研究不同处理措施对限速低于 45 英里/小时的“城市收集器和动脉道路”安全的影响。处理类型包括:(1)增加车道宽度;(2)安装中央隔离带;(3)道路线形的垂直和水平改进;(4)安装导轨。通过不同模型结构开发的安全性能函数表明,与其他模型结构相比,具有信息先验的随机效应层次 P-LN 模型表现更好。还发现每个处理类型的个体 CRF 值在道路段之间是一致的,除了导轨安装处理外,所有处理后的碰撞率都有所下降。垂直和水平调整后的碰撞率下降幅度最大,其次是车道宽度增加和中央隔离带安装。从不同候选模型获得的结果的总体统计分析表明,当数据有限时,P-LN 模型结构结合更高层次和信息先验可能会减少模型参数中的偏差,从而得到更稳健的估计。