Suppr超能文献

通过基于转录组的分子育种改善依赖NADPH的生物转化。

Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding.

作者信息

Hibi Makoto, Yukitomo Hiromi, Ito Mikito, Mori Hideo

机构信息

Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machida, Tokyo 194-8533, Japan.

出版信息

Appl Environ Microbiol. 2007 Dec;73(23):7657-63. doi: 10.1128/AEM.01754-07. Epub 2007 Oct 5.

Abstract

Transcriptome data for a xylitol-producing recombinant Escherichia coli were obtained and used to tune up its productivity. Structural genes of NADPH-dependent D-xylose reductase and D-xylose permease were inserted into an Escherichia coli chromosome to construct a recombinant strain producing xylitol from D-xylose for use as a model system for NADPH-dependent bioconversion. Transcriptome analysis of xylitol-producing and nonproducing conditions for the recombinant revealed that xylitol production down-regulated 56 genes. These genes were then selected as candidate factors for suppression of the NADPH supply and were disrupted to validate their functions. Of the gene disruptants, that resulting from the deletion of yhbC showed the best bioconversion rate. Also, the deletion accelerated cell growth during log phase. The features of the mutant could be maintained in jar fermenter-scale production of xylitol. Thus, our novel molecular host strain breeding method using transcriptome analysis was fully effective and could be applied to improving various industrial strains.

摘要

获得了产木糖醇重组大肠杆菌的转录组数据,并用于提高其生产力。将依赖NADPH的D-木糖还原酶和D-木糖通透酶的结构基因插入大肠杆菌染色体中,构建了一种从D-木糖生产木糖醇的重组菌株,用作依赖NADPH的生物转化的模型系统。对该重组菌产木糖醇和不产木糖醇条件的转录组分析表明,木糖醇生产下调了56个基因。这些基因随后被选为抑制NADPH供应的候选因子,并被破坏以验证其功能。在基因破坏株中,缺失yhbC的菌株表现出最佳的生物转化率。此外,缺失在对数期加速了细胞生长。该突变体的特性可以在木糖醇的罐式发酵规模生产中保持。因此,我们使用转录组分析的新型分子宿主菌株育种方法是完全有效的,可应用于改良各种工业菌株。

相似文献

1
Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding.
Appl Environ Microbiol. 2007 Dec;73(23):7657-63. doi: 10.1128/AEM.01754-07. Epub 2007 Oct 5.
2
Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
Biotechnol Bioeng. 2009 Jan 1;102(1):209-20. doi: 10.1002/bit.22060.
6
Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
Biotechnol Prog. 2011 Mar-Apr;27(2):333-41. doi: 10.1002/btpr.559. Epub 2011 Feb 22.
7
Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.
8
Role of xylose transporters in xylitol production from engineered Escherichia coli.
J Biotechnol. 2008 Apr 30;134(3-4):246-52. doi: 10.1016/j.jbiotec.2008.02.003. Epub 2008 Feb 15.
9
Photosynthetic Reduction of Xylose to Xylitol Using Cyanobacteria.
Biotechnol J. 2020 Jun;15(6):e1900354. doi: 10.1002/biot.201900354. Epub 2020 May 25.
10
Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
Appl Environ Microbiol. 2011 Jan;77(2):706-9. doi: 10.1128/AEM.01890-10. Epub 2010 Nov 19.

引用本文的文献

本文引用的文献

2
Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
Biotechnol Bioeng. 2006 Dec 20;95(6):1167-76. doi: 10.1002/bit.21082.
4
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
5
Biotransformation of terpenes.
Biotechnol Adv. 2006 Mar-Apr;24(2):134-42. doi: 10.1016/j.biotechadv.2005.08.004. Epub 2005 Oct 5.
7
Recent developments in pyridine nucleotide regeneration.
Curr Opin Biotechnol. 2003 Aug;14(4):421-6. doi: 10.1016/s0958-1669(03)00094-6.
8
9
Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.
FEMS Microbiol Lett. 2002 Apr 9;209(2):141-8. doi: 10.1111/j.1574-6968.2002.tb11123.x.
10
Control of intrinsic transcription termination by N and NusA: the basic mechanisms.
Cell. 2001 Nov 16;107(4):437-49. doi: 10.1016/s0092-8674(01)00582-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验