Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan.
Biotechnol J. 2020 Jun;15(6):e1900354. doi: 10.1002/biot.201900354. Epub 2020 May 25.
Photosynthetic generation of reducing power makes cyanobacteria an attractive host for biochemical reduction compared to cell-free and heterotrophic systems, which require burning of additional resources for the supply of reducing equivalent. Here, using xylitol synthesis as an example, efficient uptake and reduction of xylose photoautotrophically in Synechococcus elongatus PCC7942 are demonstrated upon introduction of an effective xylose transporter from Escherichia coli (Ec-XylE) and the NADPH-dependent xylose reductase from Candida boidinii (Cb-XR). Simultaneous activation of xylose uptake and matching of cofactor specificity enabled an average xylitol yield of 0.9 g g xylose and a maximum productivity of about 0.15 g L day OD with increased level of xylose supply. While long-term cellular maintenance still appears challenging, high-density conversion of xylose to xylitol using concentrated resting cell further pushes the titer of xylitol formation to 33 g L in six days with 85% of maximum theoretical yield. While the results show that the unknown dissipation of xylose can be minimized when coupled to a strong reaction outlet, it remains to be the major hurdle hampering the yield despite the reported inability of cyanobacteria to metabolize xylose.
与无细胞和异养系统相比,光合产生的还原力使蓝藻成为生化还原的理想宿主,因为后者需要额外消耗资源来提供还原当量。在这里,以木糖醇的合成为例,在引入来自大肠杆菌(Ec-XylE)的有效木糖转运蛋白和来自毕赤酵母(Cb-XR)的 NADPH 依赖型木糖还原酶后,证明 Synechococcus elongatus PCC7942 能够有效地将木糖进行光自养吸收和还原。木糖摄取的同时激活和辅因子特异性的匹配使木糖的平均木糖醇得率达到 0.9 g g 木糖,最大生产力约为 0.15 g L 天 OD,木糖供应增加。虽然长期的细胞维持仍然具有挑战性,但使用浓缩的静止细胞将木糖高效转化为木糖醇,可在六天内将木糖醇的形成终浓度推高至 33 g L,达到最大理论产量的 85%。尽管报道称蓝藻不能代谢木糖,但结果表明,当与强大的反应出口偶联时,可以将木糖的未知消耗最小化,但这仍然是阻碍产量提高的主要障碍。