Suppr超能文献

大肠杆菌中不存在天然发酵途径时的厌氧必需木糖醇生产。

Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.

机构信息

Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Appl Environ Microbiol. 2011 Jan;77(2):706-9. doi: 10.1128/AEM.01890-10. Epub 2010 Nov 19.

Abstract

Anaerobic glucose oxidation was coupled to xylose reduction in a nonfermentative Escherichia coli strain expressing NADPH-dependent xylose reductase. Xylitol production serves as the primary means of NAD(P)(+) regeneration, as glucose is converted primarily to acetate and CO(2). The membrane-bound transhydrogenase PntAB is required to achieve the maximum theoretical yield of four moles of xylitol per mole of glucose consumed.

摘要

在表达 NADPH 依赖型木糖还原酶的非发酵型大肠杆菌菌株中,无氧葡萄糖氧化与木糖还原偶联。木糖醇的生产是 NAD(P)(+) 再生的主要手段,因为葡萄糖主要转化为乙酸盐和 CO(2)。需要膜结合的转氢酶 PntAB 才能实现每消耗 1 摩尔葡萄糖产生 4 摩尔木糖醇的最大理论产率。

相似文献

1
Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
Appl Environ Microbiol. 2011 Jan;77(2):706-9. doi: 10.1128/AEM.01890-10. Epub 2010 Nov 19.
2
Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
Biotechnol Bioeng. 2009 Jan 1;102(1):209-20. doi: 10.1002/bit.22060.
3
Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
Biotechnol Prog. 2011 Mar-Apr;27(2):333-41. doi: 10.1002/btpr.559. Epub 2011 Feb 22.
5
Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05.
World J Microbiol Biotechnol. 2013 Jul;29(7):1225-32. doi: 10.1007/s11274-013-1285-5. Epub 2013 Feb 23.
8
Photosynthetic Reduction of Xylose to Xylitol Using Cyanobacteria.
Biotechnol J. 2020 Jun;15(6):e1900354. doi: 10.1002/biot.201900354. Epub 2020 May 25.
9
10
Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

引用本文的文献

2
Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
Microb Cell Fact. 2019 Jul 18;18(1):124. doi: 10.1186/s12934-019-1171-4.
5
Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.
J Ind Microbiol Biotechnol. 2015 Mar;42(3):423-36. doi: 10.1007/s10295-014-1539-8. Epub 2014 Nov 21.
7
Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05.
World J Microbiol Biotechnol. 2013 Jul;29(7):1225-32. doi: 10.1007/s11274-013-1285-5. Epub 2013 Feb 23.

本文引用的文献

2
Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
Biotechnol Bioeng. 2009 Jan 1;102(1):209-20. doi: 10.1002/bit.22060.
5
NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
Appl Environ Microbiol. 2008 Mar;74(5):1436-46. doi: 10.1128/AEM.02234-07. Epub 2008 Jan 11.
6
Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes.
Appl Environ Microbiol. 2007 Mar;73(6):1766-71. doi: 10.1128/AEM.02456-06. Epub 2007 Jan 26.
7
Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
Biotechnol Bioeng. 2006 Dec 20;95(6):1167-76. doi: 10.1002/bit.21082.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
10
Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells.
Biotechnol Prog. 2004 Mar-Apr;20(2):403-11. doi: 10.1021/bp030044m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验