Aygun-Sunar Semra, Bilaloglu Rahmi, Goldfine Howard, Daldal Fevzi
Department of Biology, University of Pennsylvania, 433 S. University Ave., Philadelphia, PA 19104, USA.
J Bacteriol. 2007 Dec;189(23):8564-74. doi: 10.1128/JB.01121-07. Epub 2007 Oct 5.
The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis.
荚膜红细菌基因组包含三个基因(olsA [plsC138]、plsC316和plsC3498),它们被注释为溶血磷脂酸(1-酰基-sn-甘油-3-磷酸)酰基转移酶(AGPAT)。在这些基因中,olsA先前已被证明是鸟氨酸脂质生物合成第二步中的O-酰基转移酶,这对于c型细胞色素的最佳稳态水平很重要(S. Aygun-Sunar、S. Mandaci、H.-G. Koch、I. V. J. Murray、H. Goldfine和F. Daldal。《分子微生物学》61:418 - 435,2006年)。其余的plsC316和plsC3498基因的作用仍然未知。在这项工作中,克隆了这些基因,并获得了使其失活的染色体插入 - 缺失突变体以确定它们的功能。对这些突变体的表征表明,与大肠杆菌的plsC不同,plsC316和plsC3498在荚膜红细菌中都不是必需的。相反,无法分离出plsC316 olsA双突变体,这表明在测试条件下,荚膜红细菌生长需要olsA或plsC316的完整拷贝。与OlsA缺失突变体相比,PlsC316缺失突变体含有鸟氨酸脂质且没有c型细胞色素相关表型。然而,它们表现出轻微的生长受损以及总脂肪酸和磷脂谱的高度改变。荚膜红细菌的plsC316或olsA基因产物在大肠杆菌plsC(Ts)突变体中的异源表达支持在非允许温度下的生长,在体外表现出AGPAT活性,并恢复了磷脂酸的生物合成。PlsC316显示出更强的AGPAT活性,这表明plsC316编码荚膜红细菌甘油磷脂合成所需的主要AGPAT,而olsA作为鸟氨酸脂质合成特有的替代AGPAT。因此,这项研究首次揭示,一些OlsA酶,如荚膜红细菌的酶,具有双功能,参与膜鸟氨酸脂质和甘油磷脂的生物合成。