Athenstaedt K, Daum G
SFB Biomembrane Research Center, Institut für Biochemie und Lebensmittelchemie, Technische Universität, Graz, Austria.
J Bacteriol. 1997 Dec;179(24):7611-6. doi: 10.1128/jb.179.24.7611-7616.1997.
Lipid particles of the yeast Saccharomyces cerevisiae harbor two enzymes that stepwise acylate glycerol-3-phosphate to phosphatidic acid, a key intermediate in lipid biosynthesis. In lipid particles of the s1c1 disruptant YMN5 (M. M. Nagiec et al., J. Biol. Chem. 268:22156-22163, 1993) acylation stops after the first step, resulting in the accumulation of lysophosphatidic acid. Two-dimensional gel electrophoresis confirmed that S1c1p is a component of lipid particles. Lipid particles of a second mutant strain, TTA1 (T. S. Tillman and R. M. Bell, J. Biol. Chem. 261:9144-9149, 1986), which harbors a point mutation in the GAT gene, are essentially devoid of glycerol-3-phosphate acyltransferase activity in vitro. Synthesis of phosphatidic acid is reconstituted by combining lipid particles from YMN5 and TTA1. These results indicate that two distinct enzymes are necessary for phosphatidic acid synthesis in lipid particles: the first step, acylation of glycerol-3-phosphate, is catalyzed by a putative Gat1p; the second step, acylation of lysophosphatidic acid, requires S1c1p. Surprisingly, YMN5 and TTA1 mutants grow like the corresponding wild types because the endoplasmic reticulum of both mutants has the capacity to form a reduced but significant amount of phosphatidic acid. As a consequence, an s1c1 gat1 double mutant is also viable. Lipid particles from this double mutant fail completely to acylate glycerol-3-phosphate, whereas endoplasmic reticulum membranes harbor residual enzyme activities to synthesize phosphatidic acid. Thus, yeast contains at least two independent systems of phosphatidic acid biosynthesis.
酿酒酵母的脂质颗粒含有两种酶,它们将甘油-3-磷酸逐步酰化生成磷脂酸,磷脂酸是脂质生物合成中的关键中间体。在s1c1破坏突变体YMN5(M.M.纳吉奇等人,《生物化学杂志》268:22156 - 22163,1993年)的脂质颗粒中,酰化反应在第一步后就停止了,导致溶血磷脂酸积累。二维凝胶电泳证实S1c1p是脂质颗粒的一个组分。第二个突变菌株TTA1(T.S.蒂尔曼和R.M.贝尔,《生物化学杂志》261:9144 - 9149,1986年)的脂质颗粒在体外基本上没有甘油-3-磷酸酰基转移酶活性,该菌株的GAT基因存在一个点突变。通过将YMN5和TTA1的脂质颗粒结合,可重建磷脂酸的合成。这些结果表明,脂质颗粒中磷脂酸合成需要两种不同的酶:第一步,甘油-3-磷酸的酰化由一种假定的Gat1p催化;第二步,溶血磷脂酸的酰化需要S1c1p。令人惊讶的是,YMN5和TTA1突变体的生长与相应的野生型相似,因为这两种突变体的内质网都有能力形成数量减少但仍可观的磷脂酸。因此,s1c1 gat1双突变体也是可行的。来自这种双突变体的脂质颗粒完全无法将甘油-3-磷酸酰化,而内质网膜具有合成磷脂酸的残余酶活性。因此,酵母至少含有两个独立的磷脂酸生物合成系统。