Chow Virginia, Nong Guang, Preston James F
University of Florida, Department of Microbiology and Cell Science, Gainesville, FL 32611, USA.
J Bacteriol. 2007 Dec;189(24):8863-70. doi: 10.1128/JB.01141-07. Epub 2007 Oct 5.
Direct bacterial conversion of the hemicellulose fraction of hardwoods and crop residues to biobased products depends upon extracellular depolymerization of methylglucuronoxylan (MeGAX(n)), followed by assimilation and intracellular conversion of aldouronates and xylooligosaccharides to fermentable xylose. Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium, secretes a multimodular cell-associated GH10 endoxylanase (XynA1) that catalyzes depolymerization of MeGAX(n) and rapidly assimilates the principal products, beta-1,4-xylobiose, beta-1,4-xylotriose, and MeGAX(3), the aldotetrauronate 4-O-methylglucuronosyl-alpha-1,2-xylotriose. Genomic libraries derived from this bacterium have now allowed cloning and sequencing of a unique aldouronate utilization gene cluster comprised of genes encoding signal transduction regulatory proteins, ABC transporter proteins, and the enzymes AguA (GH67 alpha-glucuronidase), XynA2 (GH10 endoxylanase), and XynB (GH43 beta-xylosidase/alpha-arabinofuranosidase). Expression of these genes, as well as xynA1 encoding the secreted GH10 endoxylanase, is induced by growth on MeGAX(n) and repressed by glucose. Sequences in the yesN, lplA, and xynA2 genes within the cluster and in the distal xynA1 gene show significant similarity to catabolite responsive element (cre) defined in Bacillus subtilis for recognition of the catabolite control protein (CcpA) and consequential repression of catabolic regulons. The aldouronate utilization gene cluster in Paenibacillus sp. strain JDR-2 operates as a regulon, coregulated with the expression of xynA1, conferring the ability for efficient assimilation and catabolism of the aldouronate product generated by a multimodular cell surface-anchored GH10 endoxylanase. This cluster offers a desirable metabolic potential for bacterial conversion of hemicellulose fractions of hardwood and crop residues to biobased products.
将阔叶木和农作物残余物中的半纤维素部分直接细菌转化为生物基产品,取决于甲基葡萄糖醛酸木聚糖(MeGAX(n))的细胞外解聚,随后醛糖酸和木寡糖被同化并在细胞内转化为可发酵的木糖。芽孢杆菌属JDR-2菌株是一种积极分解木聚糖的细菌,它分泌一种多模块的细胞相关GH10内切木聚糖酶(XynA1),该酶催化MeGAX(n)的解聚,并迅速同化主要产物β-1,4-木二糖、β-1,4-木三糖和MeGAX(3),即醛糖四糖4-O-甲基葡萄糖醛酸基-α-1,2-木三糖。源自该细菌的基因组文库现已实现对一个独特的醛糖酸利用基因簇的克隆和测序,该基因簇由编码信号转导调节蛋白、ABC转运蛋白以及AguA(GH67α-葡萄糖醛酸酶)、XynA2(GH10内切木聚糖酶)和XynB(GH43β-木糖苷酶/α-阿拉伯呋喃糖苷酶)的基因组成。这些基因以及编码分泌型GH10内切木聚糖酶的xynA1的表达,在以MeGAX(n)为生长底物时被诱导,而被葡萄糖抑制。该基因簇内yesN、lplA和xynA2基因以及远端xynA1基因中的序列,与枯草芽孢杆菌中定义的用于识别分解代谢控制蛋白(CcpA)并进而抑制分解代谢调节子的分解代谢物反应元件(cre)具有显著相似性。芽孢杆菌属JDR-2菌株中的醛糖酸利用基因簇作为一个调节子发挥作用,与xynA1的表达共同调节,赋予了对多模块细胞表面锚定的GH10内切木聚糖酶产生的醛糖酸产物进行有效同化和分解代谢的能力。该基因簇为将阔叶木和农作物残余物中的半纤维素部分细菌转化为生物基产品提供了理想的代谢潜力。