Suppr超能文献

柑橘溃疡病菌306菌株中的木聚糖利用调控子:寡聚木糖苷的基因表达与利用

Xylan utilization regulon in Xanthomonas citri pv. citri Strain 306: gene expression and utilization of oligoxylosides.

作者信息

Chow V, Shantharaj D, Guo Y, Nong G, Minsavage G V, Jones J B, Preston J F

机构信息

Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.

Department of Plant Pathology, University of Florida, Gainesville, Florida, USA.

出版信息

Appl Environ Microbiol. 2015 Mar;81(6):2163-72. doi: 10.1128/AEM.03091-14. Epub 2015 Jan 16.

Abstract

Xanthomonas citri pv. citri strain 306 (Xcc306), a causative agent of citrus canker, produces endoxylanases that catalyze the depolymerization of cell wall-associated xylans. In the sequenced genomes of all plant-pathogenic xanthomonads, genes encoding xylanolytic enzymes are clustered in three adjacent operons. In Xcc306, these consecutive operons contain genes encoding the glycoside hydrolase family 10 (GH10) endoxylanases Xyn10A and Xyn10C, the agu67 gene, encoding a GH67 α-glucuronidase (Agu67), the xyn43E gene, encoding a putative GH43 α-l-arabinofuranosidase, and the xyn43F gene, encoding a putative β-xylosidase. Recombinant Xyn10A and Xyn10C convert polymeric 4-O-methylglucuronoxylan (MeGXn) to oligoxylosides methylglucuronoxylotriose (MeGX3), xylotriose (X3), and xylobiose (X2). Xcc306 completely utilizes MeGXn predigested with Xyn10A or Xyn10C but shows little utilization of MeGXn. Xcc306 with a deletion in the gene encoding α-glucuronidase (Xcc306 Δagu67) will not utilize MeGX3 for growth, demonstrating the role of Agu67 in the complete utilization of GH10-digested MeGXn. Preferential growth on oligoxylosides compared to growth on polymeric MeGXn indicates that GH10 xylanases, either secreted by Xcc306 in planta or produced by the plant host, generate oligoxylosides that are processed by Xyn10 xylanases and Agu67 residing in the periplasm. Coordinate induction by oligoxylosides of xyn10, agu67, cirA, the tonB receptor, and other genes within these three operons indicates that they constitute a regulon that is responsive to the oligoxylosides generated by the action of Xcc306 GH10 xylanases on MeGXn. The combined expression of genes in this regulon may allow scavenging of oligoxylosides derived from cell wall deconstruction, thereby contributing to the tissue colonization and/or survival of Xcc306 and, ultimately, to plant disease.

摘要

柑橘溃疡病菌野油菜黄单胞菌柑橘致病变种306(Xcc306)可产生内切木聚糖酶,催化与细胞壁相关的木聚糖解聚。在所有植物致病黄单胞菌的测序基因组中,编码木聚糖分解酶的基因聚集在三个相邻的操纵子中。在Xcc306中,这些连续的操纵子包含编码糖苷水解酶家族10(GH10)内切木聚糖酶Xyn10A和Xyn10C的基因、编码GH67 α-葡萄糖醛酸酶(Agu67)的agu67基因、编码假定的GH43 α-L-阿拉伯呋喃糖苷酶的xyn43E基因以及编码假定的β-木糖苷酶的xyn43F基因。重组Xyn10A和Xyn10C可将聚合的4-O-甲基葡萄糖醛酸木聚糖(MeGXn)转化为低聚木糖苷甲基葡萄糖醛酸木三糖(MeGX3)、木三糖(X3)和木二糖(X2)。Xcc306可完全利用经Xyn10A或Xyn10C预消化的MeGXn,但对MeGXn的利用很少。编码α-葡萄糖醛酸酶的基因缺失的Xcc306(Xcc306 Δagu67)不能利用MeGX3进行生长,这证明了Agu67在完全利用GH10消化的MeGXn中的作用。与在聚合MeGXn上生长相比,在低聚木糖苷上优先生长表明,Xcc306在植物中分泌的或植物宿主产生的GH10木聚糖酶产生的低聚木糖苷可被位于周质中的Xyn10木聚糖酶和Agu67加工。低聚木糖苷对xyn10、agu67、cirA、tonB受体以及这三个操纵子中的其他基因的协同诱导表明,它们构成了一个对Xcc306 GH10木聚糖酶作用于MeGXn产生的低聚木糖苷有反应的调节子。该调节子中基因的联合表达可能允许清除源自细胞壁解构的低聚木糖苷,从而有助于Xcc306的组织定殖和/或存活,并最终导致植物病害。

相似文献

1
Xylan utilization regulon in Xanthomonas citri pv. citri Strain 306: gene expression and utilization of oligoxylosides.
Appl Environ Microbiol. 2015 Mar;81(6):2163-72. doi: 10.1128/AEM.03091-14. Epub 2015 Jan 16.
2
GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2.
Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25.
3
GH115 α-glucuronidase and GH11 xylanase from Paenibacillus sp. JDR-2: potential roles in processing glucuronoxylans.
Appl Microbiol Biotechnol. 2017 Feb;101(4):1465-1476. doi: 10.1007/s00253-016-7899-4. Epub 2016 Oct 21.
4
A 1,3-1,4-β-Glucan Utilization Regulon in Paenibacillus sp. Strain JDR-2.
Appl Environ Microbiol. 2016 Jan 8;82(6):1789-1798. doi: 10.1128/AEM.03526-15.
5
Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2.
Appl Environ Microbiol. 2015 Feb;81(4):1490-501. doi: 10.1128/AEM.03523-14.
7
Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2.
J Bacteriol. 2007 Dec;189(24):8863-70. doi: 10.1128/JB.01141-07. Epub 2007 Oct 5.
9
The Xanthomonas citri pv. citri Type VI Secretion System is Induced During Epiphytic Colonization of Citrus.
Curr Microbiol. 2019 Oct;76(10):1105-1111. doi: 10.1007/s00284-019-01735-3. Epub 2019 Jul 9.

引用本文的文献

1
Xylose Isomerase Depletion Enhances Virulence of subsp. in .
Int J Mol Sci. 2023 Jul 15;24(14):11491. doi: 10.3390/ijms241411491.
3
SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus.
J Microbiol. 2018 Sep;56(9):648-655. doi: 10.1007/s12275-018-8225-x. Epub 2018 Jul 27.

本文引用的文献

1
Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells.
New Phytol. 2004 Mar;161(3):641-675. doi: 10.1111/j.1469-8137.2004.00980.x. Epub 2004 Jan 16.
2
Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens.
J Biol Chem. 2014 Nov 14;289(46):32186-32200. doi: 10.1074/jbc.M114.605105. Epub 2014 Sep 29.
3
GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2.
Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25.
4
Engineering the xylan utilization system in Bacillus subtilis for production of acidic Xylooligosaccharides.
Appl Environ Microbiol. 2014 Feb;80(3):917-27. doi: 10.1128/AEM.03246-13. Epub 2013 Nov 22.
5
Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems.
Proteomics. 2013 Jun;13(12-13):1901-12. doi: 10.1002/pmic.201200454. Epub 2013 May 3.
7
The draft genome of sweet orange (Citrus sinensis).
Nat Genet. 2013 Jan;45(1):59-66. doi: 10.1038/ng.2472. Epub 2012 Nov 25.
8
Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper.
BMC Genomics. 2011 Mar 11;12:146. doi: 10.1186/1471-2164-12-146.
10
Xanthomonas citri: breaking the surface.
Mol Plant Pathol. 2003 May 1;4(3):141-57. doi: 10.1046/j.1364-3703.2003.00163.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验