Fournier Gregory P, Gogarten J Peter
Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
J Mol Evol. 2007 Oct;65(4):425-36. doi: 10.1007/s00239-007-9024-x. Epub 2007 Oct 6.
The genetic code is the syntactic foundation underlying the structure and function of every protein in the history of the biological world. Its highly ordered degenerate complexity suggests an incremental evolution, the result of a combination of selective, mechanistic, and random processes. These evolutionary processes are still poorly understood and remain an open question in the study of early life on Earth. We perform a compositional analysis of ribosomal proteins and ATPase subunits in bacterial and archaeal lineages, using conserved positions that came and remained under purifying selection before and up to the most recent common ancestor. An observable shift in amino acid usage at these conserved positions likely provides an untapped window into the history of protein sequence space, allowing events of genetic code expansion to be identified. We identify Cys, Glu, Phe, Ile, Lys, Val, Trp, and Tyr as recent additions to the genetic code, with Asn, Gln, Gly, and Leu among the more ancient. Our observations are consistent with a scenario in which genetic code expansion primarily favored amino acids that promoted an increase in polypeptide size and functionality. We propose that this expansion would have been critical in the takeover of many RNA-mediated processes, as well as the addition of novel biological functions inaccessible to an RNA-based physiology, such as crossing lipid membranes. Thus, expansion of the genetic code likely set the stage for the transition from RNA-based to protein-based life.
遗传密码是生物世界历史上每种蛋白质的结构和功能的句法基础。其高度有序的简并复杂性暗示了一种渐进式进化,这是选择性、机制性和随机过程相结合的结果。这些进化过程仍未得到充分理解,仍然是地球早期生命研究中的一个悬而未决的问题。我们对细菌和古菌谱系中的核糖体蛋白和ATP酶亚基进行了成分分析,使用在最近共同祖先之前及直至最近共同祖先期间一直处于纯化选择之下的保守位点。这些保守位点上氨基酸使用情况的可观察到的变化可能为蛋白质序列空间的历史提供了一个尚未开发的窗口,从而能够识别遗传密码扩展事件。我们确定半胱氨酸、谷氨酸、苯丙氨酸、异亮氨酸、赖氨酸、缬氨酸、色氨酸和酪氨酸是遗传密码中最近添加的,而天冬酰胺、谷氨酰胺、甘氨酸和亮氨酸则属于更为古老的。我们的观察结果与这样一种情况一致:遗传密码扩展主要有利于促进多肽大小和功能增加的氨基酸。我们提出,这种扩展对于许多由RNA介导的过程的接管,以及对于基于RNA的生理学无法实现的新生物学功能(如穿越脂质膜)的添加至关重要。因此,遗传密码的扩展可能为从基于RNA的生命向基于蛋白质的生命的转变奠定了基础。