Suppr超能文献

膳食微粒及其对胃肠道耐受性和免疫反应性的影响。

Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract.

作者信息

Powell Jonathan J, Thoree Vinay, Pele Laetitia C

机构信息

MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road Cambridge, CB1 9NL, United Kingdom.

出版信息

Br J Nutr. 2007 Oct;98 Suppl 1(Suppl 1):S59-63. doi: 10.1017/S0007114507832922.

Abstract

Dietary microparticles are non-biological bacterial-sized particles of the gastrointestinal lumen that occur due to endogenous formation (calcium phosphate) or following oral exposure (exogenous microparticle). In the UK, about 40 mg (10(12)) of exogenous microparticles are ingested per person per day, through exposure to food additives, pharmaceutical/supplement excipients or toothpaste constituents. Once ingested, exogenous microparticles are unlikely to pass through the gastrointestinal tract without adsorbing to their surfaces some ions and molecules of the intestinal lumen. Both entropy and ionic attraction drive such interactions. Calcium ions are especially well adsorbed by dietary microparticles which then provide a positively charged surface for the attraction (adsorption) of other organic molecules such as lipopolysaccharides, peptidoglycans or protein antigen from the diet or commensal flora. The major (but not only) sites of microparticle entry into intestinal tissue are the M-cell rich lymphoid aggregates (termed Peyer's patches in the small bowel). Indeed, it is well established that this is an efficient transport route for non-biological microparticles although it is unclear why. We hypothesise that this pathway exists for "endogenous microparticles" of calcium phosphate, with immunological and physiological benefit, and that "exogenous dietary microparticles", such as titanium dioxide and the silicates, hijack this route. This overview focuses on what is known of these microparticles and outlines their potential role in immune tolerance of the gut (endogenous microparticles) or immune activation (exogenous microparticles) and inflammation of the gut.

摘要

膳食微粒是胃肠道管腔内非生物性的细菌大小的颗粒,其产生源于内源性形成(磷酸钙)或经口接触(外源性微粒)。在英国,每人每天通过接触食品添加剂、药物/补充剂辅料或牙膏成分摄入约40毫克(10的12次方)外源性微粒。一旦被摄入,外源性微粒在不吸附肠腔中的一些离子和分子的情况下不太可能通过胃肠道。熵和离子吸引力都驱动着这种相互作用。膳食微粒特别容易吸附钙离子,然后为饮食或共生菌群中的其他有机分子(如脂多糖、肽聚糖或蛋白质抗原)的吸引(吸附)提供带正电荷的表面。微粒进入肠道组织的主要(但不是唯一)部位是富含M细胞的淋巴聚集物(在小肠中称为派尔集合淋巴结)。事实上,虽然尚不清楚原因,但这是一条非生物微粒的有效运输途径,这一点已得到充分证实。我们假设这条途径是为了有免疫和生理益处的磷酸钙“内源性微粒”而存在,并且“外源性膳食微粒”,如二氧化钛和硅酸盐,会利用这条途径。本综述重点介绍了对这些微粒的已知情况,并概述了它们在肠道免疫耐受(内源性微粒)或免疫激活(外源性微粒)及肠道炎症中的潜在作用。

相似文献

1
Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract.
Br J Nutr. 2007 Oct;98 Suppl 1(Suppl 1):S59-63. doi: 10.1017/S0007114507832922.
4
Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract.
J Autoimmun. 2010 May;34(3):J226-33. doi: 10.1016/j.jaut.2009.11.006. Epub 2010 Jan 21.
6
Dietary glycation compounds - implications for human health.
Crit Rev Toxicol. 2024 Sep;54(8):485-617. doi: 10.1080/10408444.2024.2362985. Epub 2024 Aug 16.

引用本文的文献

1
Presence of microplastics and nanoplastics in food, with particular focus on seafood.
EFSA J. 2016 Jun 23;14(6):e04501. doi: 10.2903/j.efsa.2016.4501. eCollection 2016 Jun.
2
Mechanisms of microplastics on gastrointestinal injury and liver metabolism disorder (Review).
Mol Med Rep. 2025 Apr;31(4). doi: 10.3892/mmr.2025.13463. Epub 2025 Feb 21.
3
Science-based evidence on pathways and effects of human exposure to micro- and nanoplastics.
Arh Hig Rada Toksikol. 2024 Mar 29;75(1):1-14. doi: 10.2478/aiht-2024-75-3807. eCollection 2024 Mar 1.
4
Adverse health effects of emerging contaminants on inflammatory bowel disease.
Front Public Health. 2023 Feb 24;11:1140786. doi: 10.3389/fpubh.2023.1140786. eCollection 2023.
6
Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts.
iScience. 2023 Jan 27;26(2):106061. doi: 10.1016/j.isci.2023.106061. eCollection 2023 Feb 17.
8
Diets for inflammatory bowel disease: What do we know so far?
Eur J Clin Nutr. 2022 Sep;76(9):1222-1233. doi: 10.1038/s41430-021-01051-9. Epub 2022 Jan 22.
9
Genotoxicity and oxidative stress induction by polystyrene nanoparticles in the colorectal cancer cell line HCT116.
PLoS One. 2021 Jul 23;16(7):e0255120. doi: 10.1371/journal.pone.0255120. eCollection 2021.
10
Crohn's Disease: Is the Cold Chain Hypothesis Still Hot?
J Crohns Colitis. 2021 Apr 6;15(4):678-686. doi: 10.1093/ecco-jcc/jjaa192.

本文引用的文献

2
Toll-dependent selection of microbial antigens for presentation by dendritic cells.
Nature. 2006 Apr 6;440(7085):808-12. doi: 10.1038/nature04596. Epub 2006 Feb 19.
3
The frameshift mutation in Nod2 results in unresponsiveness not only to Nod2- but also Nod1-activating peptidoglycan agonists.
J Biol Chem. 2005 Oct 28;280(43):35859-67. doi: 10.1074/jbc.M504924200. Epub 2005 Aug 22.
4
Lack of efficacy of a reduced microparticle diet in a multi-centred trial of patients with active Crohn's disease.
Eur J Gastroenterol Hepatol. 2005 Mar;17(3):377-84. doi: 10.1097/00042737-200503000-00019.
8
Diarrhea caused by enterotoxigenic Escherichia coli infection of humans is inhibited by dietary calcium.
Gastroenterology. 2003 Aug;125(2):469-76. doi: 10.1016/s0016-5085(03)00884-9.
10
Immune tolerance after delivery of dying cells to dendritic cells in situ.
J Exp Med. 2002 Oct 21;196(8):1091-7. doi: 10.1084/jem.20021215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验