Suppr超能文献

Wnt靶基因的差异调控涉及表观遗传机制以及T细胞因子对启动子的选择性占据。

Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors.

作者信息

Wöhrle Simon, Wallmen Britta, Hecht Andreas

机构信息

Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany.

出版信息

Mol Cell Biol. 2007 Dec;27(23):8164-77. doi: 10.1128/MCB.00555-07. Epub 2007 Oct 8.

Abstract

Canonical Wnt signaling and its nuclear effectors, beta-catenin and the family of T-cell factor (TCF) DNA-binding proteins, belong to the small number of regulatory systems which are repeatedly used for context-dependent control of distinct genetic programs. The apparent ability to elicit a large variety of transcriptional responses necessitates that beta-catenin and TCFs distinguish precisely between genes to be activated and genes to remain silent in a specific context. How this is achieved is unclear. Here, we examined patterns of Wnt target gene activation and promoter occupancy by TCFs in different mouse cell culture models. Remarkably, within a given cell type only Wnt-responsive promoters are bound by specific subsets of TCFs, whereas nonresponsive Wnt target promoters remain unoccupied. Wnt-responsive, TCF-bound states correlate with DNA hypomethylation, histone H3 hyperacetylation, and H3K4 trimethylation. Inactive, nonresponsive promoter chromatin shows DNA hypermethylation, is devoid of active histone marks, and additionally can show repressive H3K27 trimethylation. Furthermore, chromatin structural states appear to be independent of Wnt pathway activity. Apparently, cell-type-specific regulation of Wnt target genes comprises multilayered control systems. These involve epigenetic modifications of promoter chromatin and differential promoter occupancy by functionally distinct TCF proteins, which together determine susceptibility to Wnt signaling.

摘要

经典Wnt信号通路及其核效应分子β-连环蛋白和T细胞因子(TCF)DNA结合蛋白家族,属于少数被反复用于对不同遗传程序进行上下文依赖性控制的调节系统。引发多种转录反应的明显能力使得β-连环蛋白和TCF必须在特定环境中精确区分要激活的基因和保持沉默的基因。目前尚不清楚这是如何实现的。在这里,我们在不同的小鼠细胞培养模型中研究了Wnt靶基因激活模式和TCF对启动子的占据情况。值得注意的是,在给定的细胞类型中,只有Wnt反应性启动子被特定的TCF亚群结合,而非反应性Wnt靶启动子则未被占据。Wnt反应性、TCF结合状态与DNA低甲基化、组蛋白H3高乙酰化和H3K4三甲基化相关。无活性、无反应性的启动子染色质表现出DNA高甲基化,缺乏活性组蛋白标记,并且还可以表现出抑制性的H3K27三甲基化。此外,染色质结构状态似乎与Wnt信号通路活性无关。显然,Wnt靶基因的细胞类型特异性调节包括多层控制系统。这些涉及启动子染色质的表观遗传修饰以及功能不同的TCF蛋白对启动子的差异性占据,它们共同决定了对Wnt信号的敏感性。

相似文献

1
Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors.
Mol Cell Biol. 2007 Dec;27(23):8164-77. doi: 10.1128/MCB.00555-07. Epub 2007 Oct 8.
3
Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction.
J Cell Biol. 2008 Mar 24;180(6):1087-100. doi: 10.1083/jcb.200710050. Epub 2008 Mar 17.
4
e2f1 Gene is a new member of Wnt/beta-catenin/Tcf-regulated genes.
Biochem Biophys Res Commun. 2010 Jan 1;391(1):142-6. doi: 10.1016/j.bbrc.2009.11.020. Epub 2009 Nov 11.
6
Dazap2 modulates transcription driven by the Wnt effector TCF-4.
Nucleic Acids Res. 2009 May;37(9):3007-20. doi: 10.1093/nar/gkp179. Epub 2009 Mar 20.
7
Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis.
Cancer Res. 2010 May 15;70(10):4233-42. doi: 10.1158/0008-5472.CAN-09-3470. Epub 2010 May 4.
10
Mapping of the Wnt/β-catenin/TCF response elements in the human versican promoter.
Methods Mol Biol. 2012;836:35-52. doi: 10.1007/978-1-61779-498-8_3.

引用本文的文献

1
Wnt signaling regulates chemokine production and cell migration of circulating human monocytes.
Cell Commun Signal. 2024 Apr 16;22(1):229. doi: 10.1186/s12964-024-01608-8.
2
Pannexin 1 binds β-catenin to modulate melanoma cell growth and metabolism.
J Biol Chem. 2021 Jan-Jun;296:100478. doi: 10.1016/j.jbc.2021.100478. Epub 2021 Feb 26.
5
Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells.
Immunity. 2018 Feb 20;48(2):243-257.e10. doi: 10.1016/j.immuni.2018.01.012.
6
Vertebrate Axial Patterning: From Egg to Asymmetry.
Adv Exp Med Biol. 2017;953:209-306. doi: 10.1007/978-3-319-46095-6_6.
7
NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling.
Mol Biol Cell. 2017 Jan 15;28(2):346-355. doi: 10.1091/mbc.E16-07-0547. Epub 2016 Nov 30.
9
Barx2 and Pax7 Regulate Axin2 Expression in Myoblasts by Interaction with β-Catenin and Chromatin Remodelling.
Stem Cells. 2016 Aug;34(8):2169-82. doi: 10.1002/stem.2396. Epub 2016 Jun 6.
10
The Role of Chromosomal Instability and Epigenetics in Colorectal Cancers Lacking β-Catenin/TCF Regulated Transcription.
Gastroenterol Res Pract. 2016;2016:6089658. doi: 10.1155/2016/6089658. Epub 2016 Mar 7.

本文引用的文献

1
Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.
Nature. 2007 Aug 2;448(7153):553-60. doi: 10.1038/nature06008. Epub 2007 Jul 1.
2
Functional cooperation between HP1 and DNMT1 mediates gene silencing.
Genes Dev. 2007 May 15;21(10):1169-78. doi: 10.1101/gad.1536807. Epub 2007 Apr 30.
3
The polycomb group protein Suz12 is required for embryonic stem cell differentiation.
Mol Cell Biol. 2007 May;27(10):3769-79. doi: 10.1128/MCB.01432-06. Epub 2007 Mar 5.
4
Genome regulation by polycomb and trithorax proteins.
Cell. 2007 Feb 23;128(4):735-45. doi: 10.1016/j.cell.2007.02.009.
5
Control of transcription by Pontin and Reptin.
Trends Cell Biol. 2007 Apr;17(4):187-92. doi: 10.1016/j.tcb.2007.02.005. Epub 2007 Feb 22.
6
Wingless-independent association of Pygopus with dTCF target genes.
Curr Biol. 2007 Mar 20;17(6):556-61. doi: 10.1016/j.cub.2007.01.063. Epub 2007 Feb 22.
7
Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures.
Exp Cell Res. 2007 Feb 1;313(3):572-87. doi: 10.1016/j.yexcr.2006.11.002. Epub 2006 Nov 10.
8
Notch signaling pathway.
Sci STKE. 2006 Dec 5;2006(364):cm7. doi: 10.1126/stke.3642006cm7.
9
Diversity of LEF/TCF action in development and disease.
Oncogene. 2006 Dec 4;25(57):7492-504. doi: 10.1038/sj.onc.1210056.
10
Wnt/beta-catenin signaling in development and disease.
Cell. 2006 Nov 3;127(3):469-80. doi: 10.1016/j.cell.2006.10.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验