Periago María Jesús, Rincón Francisco, Jacob Karin, García-Alonso Javier, Ros Gaspar
Dpto. de Tecnología de los Alimento, Nutrición y Bromatología, Facultad de Veterinaria, Campus de Espinardo, 30071-Espinardo (Murcia), Spain.
J Agric Food Chem. 2007 Oct 31;55(22):8825-9. doi: 10.1021/jf0705623. Epub 2007 Oct 9.
The analytical process of lycopene extraction and photometrical determination was critically examined for raw tomato and processed tomato products by means of a 2 IV (15-10) Plackett-Burman experimental design in order to identify the key factors (KFs) involved. Fifteen apparent key factors (AKFs) reported in the literature were selected: sample weight (X1); volume of extraction solution (X2); antioxidant concentration (BHT, X3); neutralizing agent concentration (MgCO 3, X4); light presence during lycopene extraction (X5), homogenization velocity (X6) and time (X7), agitation time (X8), and temperature (X9) during the extraction process; water volume for separation of polar/nonpolar phases (X11); presence of inert atmosphere throughout the process (X12); time (X13), temperature (X14), and light presence (X10) during separation of phases and time delay for reading (X15). In general, higher lycopene concentrations in samples led to a higher number of key factors (KF). Thus, for raw tomato (lycopene range 1.22-2.29 mg/100 g) no KF were found, whereas for tomato sauce (lycopene range from 5.80 to 8.60 mg/100 g) one KF (X4) and for tomato paste (lycopene range from 35.80 to 51.27 mg/100 g) five KFs (X1, X2, X4, X11, and X12) were detected. For lycopene paste, X1 and X2 were identified as the KFs with the greatest impact on results, although in fact the X1/X2 ratio was the real cause. The results suggest that, with increased processing, the physical and chemical structure of lycopene becomes less important since the identified KFs explain almost 90% of variability in tomato paste but only 32% in raw tomato.
采用2⁵(15 - 10) 普拉科特-伯曼实验设计,对生番茄和加工番茄制品中番茄红素提取及光度测定的分析过程进行了严格检验,以确定其中涉及的关键因素(KF)。从文献报道的15个明显关键因素(AKF)中进行了选取:样品重量(X1);提取溶液体积(X2);抗氧化剂浓度(BHT,X3);中和剂浓度(MgCO₃,X4);番茄红素提取过程中的光照情况(X5)、匀浆速度(X6)和时间(X7)、提取过程中的搅拌时间(X8)以及温度(X9);分离极性/非极性相的加水量(X11);整个过程中惰性气氛的存在情况(X12);相分离过程中的时间(X13)、温度(X14)和光照情况(X10)以及读数延迟时间(X15)。一般来说,样品中番茄红素浓度越高,关键因素(KF)的数量就越多。因此,对于生番茄(番茄红素含量范围为1.22 - 2.29毫克/100克)未发现关键因素,而对于番茄酱(番茄红素含量范围为5.80至8.60毫克/100克)检测到1个关键因素(X4),对于番茄糊(番茄红素含量范围为35.80至51.27毫克/100克)检测到5个关键因素(X1、X2、X4、X11和X12)。对于番茄红素糊,X1和X2被确定为对结果影响最大的关键因素,尽管实际上X1/X2的比例才是真正原因。结果表明,随着加工过程的增加,番茄红素的物理和化学结构变得不那么重要,因为所确定的关键因素解释了番茄糊中近90%的变异性,但在生番茄中仅为32%。