Green Andrea M, Angelaki Dora E
Départment de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Rm. 2140, Montréal, QC, Canada H3T 1J4.
Prog Brain Res. 2007;165:155-80. doi: 10.1016/S0079-6123(06)65010-3.
An accurate internal representation of our current motion and orientation in space is critical to navigate in the world and execute appropriate action. The force of gravity provides an allocentric frame of reference that defines one's motion relative to inertial (i.e., world-centered) space. However, movement in this environment also introduces particular motion detection problems as our internal linear accelerometers, the otolith organs, respond identically to either translational motion or changes in head orientation relative to gravity. According to physical principles, there exists an ideal solution to the problem of distinguishing between the two as long as the brain also has access to accurate internal estimates of angular velocity. Here, we illustrate how a nonlinear integrative neural network that receives sensory signals from the vestibular organs could be used to implement the required computations for inertial motion detection. The model predicts several distinct cell populations that are comparable with experimentally identified cell types and accounts for a number of previously unexplained characteristics of their responses. A key model prediction is the existence of cell populations that transform head-referenced rotational signals from the semicircular canals into spatially referenced estimates of head reorientation relative to gravity. This chapter provides an overview of how addressing the problem of inertial motion estimation from a computational standpoint has contributed to identifying the actual neuronal populations responsible for solving the tilt-translation ambiguity and has facilitated the interpretation of neural response properties.
对我们当前在空间中的运动和方向形成准确的内部表征,对于在现实世界中导航并执行适当的行动至关重要。重力提供了一个以空间为中心的参照系,它定义了一个人相对于惯性(即以世界为中心)空间的运动。然而,在这种环境中的运动也带来了特殊的运动检测问题,因为我们的内部线性加速度计,即耳石器官,对平移运动或头部相对于重力的方向变化的反应是相同的。根据物理原理,只要大脑也能获得角速度的准确内部估计值,就存在一个区分这两者问题的理想解决方案。在这里,我们说明了一个接收来自前庭器官感觉信号的非线性整合神经网络如何能够用于实现惯性运动检测所需的计算。该模型预测了几个不同的细胞群,它们与实验确定的细胞类型相当,并解释了它们反应中一些以前无法解释的特征。一个关键的模型预测是存在这样的细胞群,它们将来自半规管的头部参考旋转信号转换为相对于重力的头部重新定向的空间参考估计值。本章概述了从计算角度解决惯性运动估计问题如何有助于识别负责解决倾斜 - 平移模糊性的实际神经元群,并促进了对神经反应特性的解释。