Green Andrea M, Angelaki Dora E
Dept. of Anatomy and Neurobiology, Box 8108, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
J Neurophysiol. 2004 Aug;92(2):905-25. doi: 10.1152/jn.01234.2003. Epub 2004 Mar 31.
The ability to navigate in the world and execute appropriate behavioral responses depends critically on the contribution of the vestibular system to the detection of motion and spatial orientation. A complicating factor is that otolith afferents equivalently encode inertial and gravitational accelerations. Recent studies have demonstrated that the brain can resolve this sensory ambiguity by combining signals from both the otoliths and semicircular canal sensors, although it remains unknown how the brain integrates these sensory contributions to perform the nonlinear vector computations required to accurately detect head movement in space. Here, we illustrate how a physiologically relevant, nonlinear integrative neural network could be used to perform the required computations for inertial motion detection along the interaural head axis. The proposed model not only can simulate recent behavioral observations, including a translational vestibuloocular reflex driven by the semicircular canals, but also accounts for several previously unexplained characteristics of central neural responses such as complex otolith-canal convergence patterns and the prevalence of dynamically processed otolith signals. A key model prediction, implied by the required computations for tilt-translation discrimination, is a coordinate transformation of canal signals from a head-fixed to a spatial reference frame. As a result, cell responses may reflect canal signal contributions that cannot be easily detected or distinguished from otolith signals. New experimental protocols are proposed to characterize these cells and identify their contributions to spatial motion estimation. The proposed theoretical framework makes an essential first link between the computations for inertial acceleration detection derived from the physical laws of motion and the neural response properties predicted in a physiologically realistic network implementation.
在现实世界中导航并执行适当行为反应的能力,严重依赖于前庭系统对运动检测和空间定向的贡献。一个复杂因素是,耳石传入神经等效地编码惯性加速度和重力加速度。最近的研究表明,大脑可以通过整合来自耳石和半规管传感器的信号来解决这种感觉上的模糊性,尽管大脑如何整合这些感觉贡献以执行在空间中准确检测头部运动所需的非线性矢量计算仍不清楚。在这里,我们说明了一个生理相关的非线性整合神经网络如何可用于执行沿双耳头部轴进行惯性运动检测所需的计算。所提出的模型不仅可以模拟最近的行为观察结果,包括由半规管驱动的平移前庭眼反射,还解释了中枢神经反应的几个先前无法解释的特征,如复杂的耳石-半规管汇聚模式和动态处理的耳石信号的普遍性。倾斜-平移辨别所需计算所暗示的一个关键模型预测是,半规管信号从头部固定参考系到空间参考系的坐标变换。因此,细胞反应可能反映了半规管信号的贡献,而这些贡献不易从耳石信号中检测或区分出来。提出了新的实验方案来表征这些细胞,并确定它们对空间运动估计的贡献。所提出的理论框架在从运动物理定律推导的惯性加速度检测计算与在生理现实网络实现中预测的神经反应特性之间建立了至关重要的第一个联系。