Rybak Ilya A, Abdala Ana P L, Markin Sergey N, Paton Julian F R, Smith Jeffrey C
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
Prog Brain Res. 2007;165:201-20. doi: 10.1016/S0079-6123(06)65013-9.
The brainstem respiratory network can operate in multiple functional states engaging different state-dependent neural mechanisms. These mechanisms were studied in the in situ perfused rat brainstem-spinal cord preparation using sequential brainstem transections and administration of riluzole, a pharmacological blocker of persistent sodium current (INaP). Dramatic transformations in the rhythmogenic mechanisms and respiratory motor pattern were observed after removal of the pons and subsequent medullary transactions down to the rostral end of pre-Bötzinger complex (pre-BötC). A computational model of the brainstem respiratory network was developed to reproduce and explain these experimental findings. The model incorporates several interacting neuronal compartments, including the ventral respiratory group (VRG), pre-BötC, Bötzinger complex (BötC), and pons. Simulations mimicking the removal of circuit components following transections closely reproduce the respiratory motor output patterns recorded from the intact and sequentially reduced brainstem preparations. The model suggests that both the operating rhythmogenic mechanism (i.e., network-based or pacemaker-driven) and the respiratory pattern generated (e.g., three-phase, two-phase, or one-phase) depend on the state of the pre-BötC (expression of INaP-dependent intrinsic rhythmogenic mechanisms) and the BötC (providing expiratory inhibition in the network). At the same time, tonic drives from pons and multiple medullary chemoreceptive sites appear to control the state of these compartments and hence the operating rhythmogenic mechanism and motor pattern. Our results suggest that the brainstem respiratory network has a spatial (rostral-to-caudal) organization extending from the rostral pons to the VRG, in which each functional compartment is controlled by more rostral compartments. The model predicts a continuum of respiratory network states relying on different contributions of intrinsic cellular properties versus synaptic interactions for the generation and control of the respiratory rhythm and pattern.
脑干呼吸网络可以在多种功能状态下运行,涉及不同的状态依赖性神经机制。利用脑干连续横切和给予利鲁唑(一种持续性钠电流(INaP)的药理学阻滞剂),在原位灌注大鼠脑干-脊髓标本中对这些机制进行了研究。在切除脑桥以及随后将延髓横切至前包钦格复合体(pre-BötC)头端后,观察到节律发生机制和呼吸运动模式发生了显著变化。开发了一个脑干呼吸网络的计算模型来重现和解释这些实验结果。该模型包含几个相互作用的神经元区室,包括腹侧呼吸组(VRG)、pre-BötC、包钦格复合体(BötC)和脑桥。模拟横切后电路组件移除的仿真实验紧密重现了完整和依次缩减的脑干标本所记录的呼吸运动输出模式。该模型表明,运行的节律发生机制(即基于网络的或起搏器驱动的)以及所产生的呼吸模式(例如,三相、两相或单相)取决于pre-BötC的状态(INaP依赖性内在节律发生机制的表达)和BötC的状态(在网络中提供呼气抑制)。同时,来自脑桥和多个延髓化学感受位点的紧张性驱动似乎控制着这些区室的状态,从而控制着运行的节律发生机制和运动模式。我们的结果表明,脑干呼吸网络具有从脑桥头端延伸至VRG的空间(从头端到尾端)组织,其中每个功能区室都由更头端的区室控制。该模型预测了呼吸网络状态的连续性,其依赖于内在细胞特性与突触相互作用对呼吸节律和模式的产生及控制的不同贡献。