Fujii Ritsuko, Shimonaka Shozo, Uchida Naoko, Gardiner Alastair T, Cogdell Richard J, Sugisaki Mitsuru, Hashimoto Hideki
Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
Photosynth Res. 2008 Feb-Mar;95(2-3):327-37. doi: 10.1007/s11120-007-9260-3. Epub 2007 Oct 10.
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.
典型的紫色细菌光合单位由外周(LH2)和核心(LH1-RC)天线复合体的超分子阵列组成。完整膜中光合单位的近期原子力显微镜图像显示,这些单位的结构是可变的(Scheuring等人,(2005年)《生物化学与生物物理学报》1712:109-127)。在本研究中,我们描述了从纯化的LH2(来自嗜酸红假单胞菌)和LH1-RC(来自绿硫红假单胞菌)核心复合体混合物构建脂质双层中异源光合单位的方法。这些重构光合单位的结构可通过控制添加的LH2与核心复合体的比例来改变。通过电子显微镜结合傅里叶分析观察复合体的排列。在天然光合膜中看到的核心复合体规则三角阵列可通过温度循环在重构膜中再生。在添加LH2复合体的情况下,这种三角对称性被正交对称性取代。后者较小的晶格长度表明正交晶格的组成单位是LH2。荧光和荧光激发光谱应用于用不同比例的LH2与核心复合体制备的一组重构膜。值得注意的是,尽管LH2复合体含有细菌叶绿素a,而核心复合体含有细菌叶绿素b,但仍有可能证明能量从LH2转移到核心复合体。这些实验为研究改变紫色细菌光合单位的结构如何影响光捕获的整体效率迈出了第一步。