Wu Huai-Ning, Li Han-Xiong
IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1422-30. doi: 10.1109/tsmcb.2007.904026.
This correspondence studies the problem of finite-dimensional constrained fuzzy control for a class of systems described by nonlinear parabolic partial differential equations (PDEs). Initially, Galerkin's method is applied to the PDE system to derive a nonlinear ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. Subsequently, a systematic modeling procedure is given to construct exactly a Takagi-Sugeno (T-S) fuzzy model for the finite-dimensional ODE system under state constraints. Then, based on the T-S fuzzy model, a sufficient condition for the existence of a stabilizing fuzzy controller is derived, which guarantees that the state constraints are satisfied and provides an upper bound on the quadratic performance function for the finite-dimensional slow system. The resulting fuzzy controllers can also guarantee the exponential stability of the closed-loop PDE system. Moreover, a local optimization algorithm based on the linear matrix inequalities is proposed to compute the feedback gain matrices of a suboptimal fuzzy controller in the sense of minimizing the quadratic performance bound. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod.
本通信研究了一类由非线性抛物型偏微分方程(PDEs)描述的系统的有限维约束模糊控制问题。首先,将伽辽金方法应用于PDE系统,以导出一个准确描述PDE系统主导(慢)模态动力学的非线性常微分方程(ODE)系统。随后,给出了一个系统的建模过程,用于在状态约束下为有限维ODE系统精确构建一个Takagi-Sugeno(T-S)模糊模型。然后,基于T-S模糊模型,推导了稳定模糊控制器存在的充分条件,该条件保证了状态约束得到满足,并为有限维慢系统的二次性能函数提供了一个上界。所得的模糊控制器还可以保证闭环PDE系统的指数稳定性。此外,提出了一种基于线性矩阵不等式的局部优化算法,用于在最小化二次性能界的意义下计算次优模糊控制器的反馈增益矩阵。最后,将所提出的设计方法应用于催化棒温度分布的控制。