Suppr超能文献

基于伽辽金/神经网络的非线性分布参数系统保成本控制设计

A galerkin/neural-network-based design of guaranteed cost control for nonlinear distributed parameter systems.

作者信息

Wu Huai-Ning, Li Han-Xiong

机构信息

School of Automation Science and Electrical Engineering, Beihang University (Beijing University of Aeronautics and Astronautics), Beijing 100083, PR China.

出版信息

IEEE Trans Neural Netw. 2008 May;19(5):795-807. doi: 10.1109/TNN.2007.912592.

Abstract

This paper presents a Galerkin/neural-network- based guaranteed cost control (GCC) design for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities. A parabolic PDE system typically involves a spatial differential operator with eigenspectrum that can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. Motivated by this, in the proposed control scheme, Galerkin method is initially applied to the PDE system to derive an ordinary differential equation (ODE) system with unknown nonlinearities, which accurately describes the dynamics of the dominant (slow) modes of the PDE system. The resulting nonlinear ODE system is subsequently parameterized by a multilayer neural network (MNN) with one-hidden layer and zero bias terms. Then, based on the neural model and a Lure-type Lyapunov function, a linear modal feedback controller is developed to stabilize the closed-loop PDE system and provide an upper bound for the quadratic cost function associated with the finite-dimensional slow system for all admissible approximation errors of the network. The outcome of the GCC problem is formulated as a linear matrix inequality (LMI) problem. Moreover, by using the existing LMI optimization technique, a suboptimal guaranteed cost controller in the sense of minimizing the cost bound is obtained. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod.

摘要

本文针对一类具有未知非线性的抛物型偏微分方程(PDE)系统,提出了一种基于伽辽金/神经网络的保成本控制(GCC)设计方法。抛物型PDE系统通常涉及一个空间微分算子,其特征谱可分为一个有限维的慢模态和一个无穷维的稳定快模态。基于此,在所提出的控制方案中,首先将伽辽金方法应用于PDE系统,以导出一个具有未知非线性的常微分方程(ODE)系统,该系统准确地描述了PDE系统主导(慢)模态的动态特性。随后,通过一个具有单隐层且无偏置项的多层神经网络(MNN)对所得的非线性ODE系统进行参数化。然后,基于神经模型和一个Lure型李雅普诺夫函数,设计了一种线性模态反馈控制器,以稳定闭环PDE系统,并为与有限维慢系统相关的二次成本函数提供一个上界,该上界适用于网络的所有允许近似误差。GCC问题的结果被表述为一个线性矩阵不等式(LMI)问题。此外,利用现有的LMI优化技术,获得了一个在最小化成本界意义下的次优保成本控制器。最后,将所提出的设计方法应用于催化棒温度分布的控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验