Suppr超能文献

具有持续有界干扰的非线性分布参数系统的自适应神经控制设计

Adaptive neural control design for nonlinear distributed parameter systems with persistent bounded disturbances.

作者信息

Wu Huai-Ning, Li Han-Xiong

机构信息

School of Automation Science and Electrical Engineering, Beihang University (formerly Beijing University of Aeronautics and Astronautics), Beijing, China.

出版信息

IEEE Trans Neural Netw. 2009 Oct;20(10):1630-44. doi: 10.1109/TNN.2009.2028887. Epub 2009 Sep 9.

Abstract

In this paper, an adaptive neural network (NN) control with a guaranteed L(infinity)-gain performance is proposed for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities and persistent bounded disturbances. Initially, Galerkin method is applied to the PDE system to derive a low-order ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. Subsequently, based on the low-order slow model and the Lyapunov technique, an adaptive modal feedback controller is developed such that the closed-loop slow system is semiglobally input-to-state practically stable (ISpS) with an L(infinity)-gain performance. In the proposed control scheme, a radial basis function (RBF) NN is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown system nonlinearities. The outcome of the adaptive L(infinity)-gain control problem is formulated as a linear matrix inequality (LMI) problem. Moreover, by using the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(infinity)-gain, while control constraints are respected. Furthermore, it is shown that the proposed controller can ensure the semiglobal input-to-state practical stability and L(infinity)-gain performance of the closed-loop PDE system. Finally, by applying the developed design method to the temperature profile control of a catalytic rod, the achieved simulation results show the effectiveness of the proposed controller.

摘要

本文针对一类具有未知非线性和持续有界干扰的抛物型偏微分方程(PDE)系统,提出了一种具有保证的(L_{\infty})增益性能的自适应神经网络(NN)控制方法。首先,将伽辽金方法应用于PDE系统,以导出一个低阶常微分方程(ODE)系统,该系统准确地描述了PDE系统主导(慢)模态的动态特性。随后,基于低阶慢模型和李雅普诺夫技术,开发了一种自适应模态反馈控制器,使得闭环慢系统在具有(L_{\infty})增益性能的情况下是半全局输入到状态实际稳定(ISpS)的。在所提出的控制方案中,由于系统非线性未知,采用径向基函数(RBF)神经网络来逼近李雅普诺夫函数导数中的未知项。自适应(L_{\infty})增益控制问题的结果被表述为一个线性矩阵不等式(LMI)问题。此外,通过使用现有的LMI优化技术,在尊重控制约束的同时,以最小化(L_{\infty})增益的上界的意义获得了一个次优控制器。此外,结果表明所提出的控制器可以确保闭环PDE系统的半全局输入到状态实际稳定性和(L_{\infty})增益性能。最后,通过将所开发的设计方法应用于催化棒的温度分布控制,所获得的仿真结果表明了所提出控制器的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验