Qu Jian, Mayer Christoph, Behrens Susanne, Holst Otto, Kleinschmidt Jörg H
Fachbereich Biologie, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany.
J Mol Biol. 2007 Nov 16;374(1):91-105. doi: 10.1016/j.jmb.2007.09.020. Epub 2007 Sep 14.
The interactions of outer membrane proteins (OMPs) with the periplasmic chaperone Skp from Escherichia coli are not well understood. We have examined the binding of Skp to various OMPs of different origin, size, and function. These were OmpA, OmpG, and YaeT (Omp85) from Escherichia coli, the translocator domain of the autotransporter NalP from Neisseria meningitides, FomA from Fusobacterium nucleatum, and the voltage-dependent anion-selective channel, human isoform 1 (hVDAC1) from mitochondria. Binding of Skp was observed for bacterial OMPs, but neither for hVDAC1 nor for soluble bovine serum albumin. The Skp trimer formed 1:1 complexes, OMP.Skp(3), with bacterial OMPs, independent of their size or origin. The dissociation constants of these OMP.Skp(3) complexes were all in the nanomolar range, indicating that they are stable. Complexes of Skp(3) with YaeT displayed the smallest dissociation constants, complexes with NalP the largest. OMP binding to Skp(3) was pH-dependent and not observed when either Skp or OMPs were neutralized at very basic or very acidic pH. When the ionic strength was increased, the free energies of binding of Skp to OmpA or OmpG were reduced. Electrostatic interactions were therefore necessary for formation and stability of OMP.Skp(3) complexes. Light-scattering and circular dichroism experiments demonstrated that Skp(3) remained a stable trimer from pH 3 to pH 11. In the OmpA.Skp(3) complex, Skp efficiently shielded tryptophan residues of the transmembrane strands of OmpA against fluorescence quenching by aqueous acrylamide. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, bound to OmpA.Skp(3) complexes at low stoichiometries. Acrylamide quenching of fluorescence indicated that in this ternary complex, the tryptophan residues of the transmembrane domain of OmpA were located closer to the surface than in binary OmpA.Skp(3) complexes. This may explain previous observations that folding of Skp-bound OmpA into lipid bilayers is facilitated in presence of LPS.
外膜蛋白(OMPs)与大肠杆菌周质伴侣蛋白Skp之间的相互作用尚未完全明确。我们研究了Skp与不同来源、大小和功能的各种OMPs的结合情况。这些OMPs包括来自大肠杆菌的OmpA、OmpG和YaeT(Omp85),脑膜炎奈瑟菌自转运蛋白NalP的转运结构域,具核梭杆菌的FomA,以及线粒体电压依赖性阴离子选择性通道人源亚型1(hVDAC1)。观察到Skp与细菌OMPs结合,但与hVDAC1和可溶性牛血清白蛋白均不结合。Skp三聚体与细菌OMPs形成1:1复合物,即OMP.Skp(3),与它们的大小或来源无关。这些OMP.Skp(3)复合物的解离常数均在纳摩尔范围内,表明它们很稳定。Skp(3)与YaeT的复合物解离常数最小,与NalP的复合物解离常数最大。OMP与Skp(3)的结合依赖于pH,当Skp或OMPs在非常碱性或非常酸性的pH条件下被中和时未观察到结合。当离子强度增加时,Skp与OmpA或OmpG的结合自由能降低。因此,静电相互作用对于OMP.Skp(3)复合物的形成和稳定性是必需的。光散射和圆二色性实验表明Skp(3)在pH 3至pH 11范围内保持稳定的三聚体状态。在OmpA.Skp(3)复合物中,Skp有效地保护了OmpA跨膜链上的色氨酸残基免受丙烯酰胺水溶液的荧光猝灭。脂多糖(LPS)是革兰氏阴性菌外膜的主要成分,以低化学计量比与OmpA.Skp(3)复合物结合。荧光的丙烯酰胺猝灭表明,在这种三元复合物中,OmpA跨膜结构域的色氨酸残基比在二元OmpA.Skp(3)复合物中更靠近表面。这可能解释了之前的观察结果,即在LPS存在下,与Skp结合的OmpA更容易折叠到脂质双层中。