Zdeborová Lenka, Krzakała Florent
LPTMS, UMR 8626 CNRS et Université Paris-Sud, 91405 Orsay CEDEX, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031131. doi: 10.1103/PhysRevE.76.031131. Epub 2007 Sep 26.
We consider the problem of coloring the vertices of a large sparse random graph with a given number of colors so that no adjacent vertices have the same color. Using the cavity method, we present a detailed and systematic analytical study of the space of proper colorings (solutions). We show that for a fixed number of colors and as the average vertex degree (number of constraints) increases, the set of solutions undergoes several phase transitions similar to those observed in the mean field theory of glasses. First, at the clustering transition, the entropically dominant part of the phase space decomposes into an exponential number of pure states so that beyond this transition a uniform sampling of solutions becomes hard. Afterward, the space of solutions condenses over a finite number of the largest states and consequently the total entropy of solutions becomes smaller than the annealed one. Another transition takes place when in all the entropically dominant states a finite fraction of nodes freezes so that each of these nodes is allowed a single color in all the solutions inside the state. Eventually, above the coloring threshold, no more solutions are available. We compute all the critical connectivities for Erdos-Rényi and regular random graphs and determine their asymptotic values for a large number of colors. Finally, we discuss the algorithmic consequences of our findings. We argue that the onset of computational hardness is not associated with the clustering transition and we suggest instead that the freezing transition might be the relevant phenomenon. We also discuss the performance of a simple local Walk-COL algorithm and of the belief propagation algorithm in the light of our results.
我们考虑用给定数量的颜色给大型稀疏随机图的顶点着色,使得相邻顶点不会有相同颜色的问题。使用腔方法,我们对恰当着色(解)空间进行了详细且系统的分析研究。我们表明,对于固定数量的颜色,随着平均顶点度(约束数量)增加,解集经历了几个类似于在玻璃平均场理论中观察到的相变。首先,在聚类转变时,相空间中熵主导部分分解为指数数量的纯态,因此在这个转变之后,对解进行均匀采样变得困难。之后,解空间在有限数量的最大状态上凝聚,结果解的总熵变得小于退火熵。当在所有熵主导状态中有限比例的节点冻结,使得这些节点中的每一个在该状态内的所有解中都只允许一种颜色时,会发生另一个转变。最终,在着色阈值之上,不再有解可用。我们计算了厄多斯 - 雷尼随机图和正则随机图的所有临界连通性,并确定了对于大量颜色时它们的渐近值。最后,我们讨论了我们研究结果的算法后果。我们认为计算难度的出现与聚类转变无关,相反,我们认为冻结转变可能是相关现象。我们还根据我们的结果讨论了简单局部游走 - COL算法和信念传播算法的性能。