Suppr超能文献

量子退火随机图着色的参数调整模式。

Parameter tuning patterns for random graph coloring with quantum annealing.

机构信息

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, United Kingdom.

出版信息

PLoS One. 2012;7(11):e50060. doi: 10.1371/journal.pone.0050060. Epub 2012 Nov 14.

Abstract

Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-coloring instances, some of which have been open for almost two decades.

摘要

量子退火是一种受量子力学启发的组合优化技术。在这里,我们展示了一个用于大型密集随机图的 k-着色的自旋模型可以通过场调谐,使得其在蒙特卡罗量子退火过程中的接受率发散,直到达到基态。我们还发现,表现出这种发散接受率的模拟通常比那些调谐到更传统的接受率下降和/或停滞模式的模拟更有效。这一观察结果有助于发现几个著名的基准 k-着色实例的解决方案,其中一些已经开放了将近二十年。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a9/3498173/26db71f0b314/pone.0050060.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验