Suppr超能文献

高效解决困难的计算问题:渐近参数复杂度 3 着色算法。

Solving hard computational problems efficiently: asymptotic parametric complexity 3-coloring algorithm.

机构信息

Computer Architecture and Automation, Complutense University of Madrid, Madrid, Spain.

出版信息

PLoS One. 2013;8(1):e53437. doi: 10.1371/journal.pone.0053437. Epub 2013 Jan 14.

Abstract

Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways. In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present if and only if it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to "efficiently" solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter α∈N. Nevertheless, here it is proved that the probability of requiring a value of α>k to obtain a solution for a random graph decreases exponentially: P(α>k)≤2(-(k+1)), making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results.

摘要

在几乎所有的科学和技术学科中,许多实际问题都被归类为计算困难(NP 难或甚至 NP 完全)。在生命科学中,组合优化问题经常出现在分子生物学中,例如,基因组测序;多个基因组的全局比对;识别兄弟姐妹或发现失调的途径。在几乎所有这些问题中,都需要证明一个关于对象某个属性的假设,这个属性只有在它采用某些特定的可接受结构(NP 证书)时才存在,或者不存在(没有可接受的结构),然而,由于没有找到解决方案,没有标准方法可以放弃假设,因为没有一种方法可以证明没有可接受的结构。本文提出了一种算法,该算法引入了一种新的解决方案类型,以“高效”解决图 3 着色问题;这是一个 NP 完全问题。所提出的方法在两种情况下都提供证书(证明):存在或不存在,因此可以根据严格的证明接受或拒绝假设。它提供了精确的解决方案,并且是多项式时间(即有效)的,然而参数化的。唯一的要求是足够的计算能力,这由参数α∈N 控制。然而,在这里证明了,对于随机图,获得解决方案所需的α值大于 k 的概率呈指数级下降:P(α>k)≤2(-(k+1)),使得几乎所有的问题实例都可以处理。进行了彻底的实验分析。该算法在随机图、平面图和 4-正则平面图上进行了测试。获得的实验结果与理论预期结果相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7c9/3544923/41d0486ab07b/pone.0053437.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验