Suppr超能文献

Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly.

作者信息

Farhat H, Son H, Samsonidze Ge G, Reich S, Dresselhaus M S, Kong J

机构信息

Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA.

出版信息

Phys Rev Lett. 2007 Oct 5;99(14):145506. doi: 10.1103/PhysRevLett.99.145506.

Abstract

We have studied the line shape and frequency of the G band Raman modes in individual metallic single walled carbon nanotubes (M-SWNTs) as a function of Fermi level (epsilonF) position, by tuning a polymer electrolyte gate. Our study focuses on the data from M-SWNTs where explicit assignment of the G- and G+ peaks can be made. The frequency and line shape of the G- peak in the Raman spectrum of M-SWNTs is very sensitive to the position of the Fermi level. Within +/- variant Planck's over 2piomega/2 (where variant Planck's over 2piomega is the phonon energy) around the band crossing point, the G- mode is softened and broadened. In contrast, as the Fermi level is tuned away from the band crossing point, a semiconductinglike G band line shape is recovered both in terms of frequency and linewidth. Our results confirm the predicted softening of the A-symmetry LO phonon mode frequency due to a Kohn anomaly in M-SWNTs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验