Biondini Gino
State University of New York at Buffalo, Department of Mathematics, Buffalo, New York 14260, USA.
Phys Rev Lett. 2007 Aug 10;99(6):064103. doi: 10.1103/PhysRevLett.99.064103.
We study soliton solutions of the Kadomtsev-Petviashvili II equation (-4u(t)+6uu(x)+3u(xxx))(x)+u(yy)=0 in terms of the amplitudes and directions of the interacting solitons. In particular, we classify elastic N-soliton solutions, namely, solutions for which the number, directions, and amplitudes of the N asymptotic line solitons as y-->infinity coincide with those of the N asymptotic line solitons as y-->-infinity. We also show that the (2N-1)!! types of solutions are uniquely characterized in terms of the individual soliton parameters, and we calculate the soliton position shifts arising from the interactions.
我们根据相互作用孤子的振幅和方向研究了Kadomtsev-Petviashvili II方程((-4u(t)+6uu(x)+3u(xxx))(x)+u(yy)=0)的孤子解。特别地,我们对弹性N孤子解进行了分类,即当(y\to\infty)时N个渐近线孤子的数量、方向和振幅与当(y\to -\infty)时N个渐近线孤子的数量、方向和振幅一致的解。我们还表明,(2N - 1)!! 类型的解由各个孤子参数唯一表征,并且我们计算了相互作用引起的孤子位置偏移。