Nadeem Muhammad, Jingxia Ding, Tariq Kalim U, Alsayaad Yahya
School of Mathematics and Statistics, Qujing Normal University, Qujing, 655011, China.
Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, AJK, 10250, Pakistan.
Sci Rep. 2024 Jul 9;14(1):15865. doi: 10.1038/s41598-024-66765-9.
The study of the Kadomtsev-Petviashvili (KP) model is widely used for simulating several scientific phenomena, including the evolution of water wave surfaces, the processes of soliton diffusion, and the electromagnetic field of transmission. In current study, we explore some multiple soliton solutions of the (3+1)-dimensional generalized KP model via applying modified Sardar sub-equation approach (MSSEA). By extracting the novel soliton solutions, we can effectively obtain singular, dark, combo, periodic and plane wave solutions through a multiple physical regions. We also investigate the chaotic structure of governing model using the chaos theory. The behavior of the collected solutions is visually depicted to demonstrate the physical properties of the proposed model. The solutions obtained in this paper can expand the existing solutions of the (3+1)-dimensional KP model and enhance our understanding of the nonlinear dynamic behaviors. This approach allows for consistent and effective treatment of the computation process for nonlinear KP model.
Kadomtsev-Petviashvili(KP)模型的研究被广泛用于模拟多种科学现象,包括水波表面的演化、孤子扩散过程以及传输电磁场。在当前研究中,我们通过应用改进的Sardar子方程方法(MSSEA)探索(3 + 1)维广义KP模型的一些多重孤子解。通过提取新颖的孤子解,我们可以有效地在多个物理区域中获得奇异、暗、组合、周期和平面对波解。我们还使用混沌理论研究了控制模型的混沌结构。直观地描绘了所收集解的行为,以展示所提出模型的物理性质。本文获得的解可以扩展(3 + 1)维KP模型的现有解,并增强我们对非线性动力学行为的理解。这种方法允许对非线性KP模型的计算过程进行一致且有效的处理。