Yu Guo-Fu, Xu Zong-Wei
Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062902. doi: 10.1103/PhysRevE.91.062902. Epub 2015 Jun 2.
A Kadomtsev-Petviashvili- (KP-) type equation appears in fluid mechanics, plasma physics, and gas dynamics. In this paper, we propose an integrable semidiscrete analog of a coupled (2+1)-dimensional system which is related to the KP equation and the Zakharov equation. N-soliton solutions of the discrete equation are presented. Some interesting examples of soliton resonance related to the two-soliton and three-soliton solutions are investigated. Numerical computations using the integrable semidiscrete equation are performed. It is shown that the integrable semidiscrete equation gives very accurate numerical results in the cases of one-soliton evolution and soliton interactions.
一个 Kadomtsev-Petviashvili-(KP-)型方程出现在流体力学、等离子体物理学和气体动力学中。在本文中,我们提出了一个与 KP 方程和 Zakharov 方程相关的耦合(2 + 1)维系统的可积半离散模拟。给出了离散方程的 N 孤子解。研究了一些与两孤子和三孤子解相关的孤子共振的有趣例子。使用可积半离散方程进行了数值计算。结果表明,在单孤子演化和孤子相互作用的情况下,可积半离散方程给出了非常精确的数值结果。