Ylipaavalniemi Jarkko, Vigário Ricardo
Adaptive Informatics Research Centre, Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Finland.
Neuroimage. 2008 Jan 1;39(1):169-80. doi: 10.1016/j.neuroimage.2007.08.027. Epub 2007 Aug 28.
Independent component analysis (ICA) is a powerful data-driven signal processing technique. It has proved to be helpful in, e.g., biomedicine, telecommunication, finance and machine vision. Yet, some problems persist in its wider use. One concern is the reliability of solutions found with ICA algorithms, resulting from the stochastic changes each time the analysis is performed. The consistency of the solutions can be analyzed by clustering solutions from multiple runs of bootstrapped ICA. Related methods have been recently published either for analyzing algorithmic stability or reducing the variability. The presented approach targets the extraction of additional information related to the independent components, by focusing on the nature of the variability. Practical implications are illustrated through a functional magnetic resonance imaging (fMRI) experiment.
独立成分分析(ICA)是一种强大的数据驱动信号处理技术。事实证明,它在生物医学、电信、金融和机器视觉等领域很有帮助。然而,在更广泛的应用中仍存在一些问题。一个问题是ICA算法找到的解决方案的可靠性,这是由于每次进行分析时的随机变化导致的。可以通过对多次自展ICA运行的解决方案进行聚类来分析解决方案的一致性。最近已经发表了相关方法,用于分析算法稳定性或减少变异性。本文提出的方法通过关注变异性的本质,旨在提取与独立成分相关的额外信息。通过功能磁共振成像(fMRI)实验说明了实际意义。