Suppr超能文献

使用基于解剖图谱的缩减和自举聚类的功能磁共振成像大样本组独立成分分析

Large Sample Group Independent Component Analysis of Functional Magnetic Resonance Imaging Using Anatomical Atlas-Based Reduction and Bootstrapped Clustering.

作者信息

Anderson Ariana, Bramen Jennifer, Douglas Pamela K, Lenartowicz Agatha, Cho Andrew, Culbertson Chris, Brody Arthur L, Yuille Alan L, Cohen Mark S

机构信息

Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA.

出版信息

Int J Imaging Syst Technol. 2011 Jun;21(2):223-231. doi: 10.1002/ima.20286.

Abstract

Independent component analysis (ICA) is a popular method for the analysis of functional magnetic resonance imaging (fMRI) signals that is capable of revealing connected brain systems of functional significance. To be computationally tractable, estimating the independent components (ICs) inevitably requires one or more dimension reduction steps. Whereas most algorithms perform such reductions in the time domain, the input data are much more extensive in the spatial domain, and there is broad consensus that the brain obeys rules of localization of function into regions that are smaller in number than the number of voxels in a brain image. These functional units apparently reorganize dynamically into networks under different task conditions. Here we develop a new approach to ICA, producing group results by bagging and clustering over hundreds of pooled single-subject ICA results that have been projected to a lower-dimensional subspace. Averages of anatomically based regions are used to compress the single subject-ICA results prior to clustering and resampling via bagging. The computational advantages of this approach make it possible to perform group-level analyses on datasets consisting of hundreds of scan sessions by combining the results of within-subject analysis, while retaining the theoretical advantage of mimicking what is known of the functional organization of the brain. The result is a compact set of spatial activity patterns that are common and stable across scan sessions and across individuals. Such representations may be used in the context of statistical pattern recognition supporting real-time state classification.

摘要

独立成分分析(ICA)是一种用于分析功能磁共振成像(fMRI)信号的常用方法,它能够揭示具有功能意义的相连脑系统。为了便于计算处理,估计独立成分(IC)不可避免地需要一个或多个降维步骤。虽然大多数算法在时域中执行这种降维,但输入数据在空间域中要广泛得多,并且人们普遍认为大脑遵循功能定位规则,这些功能区域的数量比脑图像中的体素数量少。这些功能单元在不同任务条件下显然会动态重组为网络。在这里,我们开发了一种新的ICA方法,通过对数百个汇总的单受试者ICA结果进行装袋和聚类来生成组结果,这些结果已被投影到低维子空间。基于解剖区域的平均值用于在聚类和通过装袋重采样之前压缩单受试者ICA结果。这种方法的计算优势使得通过组合受试者内分析的结果,能够对由数百个扫描会话组成的数据集进行组水平分析,同时保留模拟已知脑功能组织的理论优势。结果是一组紧凑的空间活动模式,这些模式在扫描会话和个体之间是常见且稳定的。这种表示可用于支持实时状态分类的统计模式识别的背景下。

相似文献

5
A group model for stable multi-subject ICA on fMRI datasets.基于 fMRI 数据集的稳定多体独立成分分析的组模型。
Neuroimage. 2010 May 15;51(1):288-99. doi: 10.1016/j.neuroimage.2010.02.010. Epub 2010 Feb 12.

引用本文的文献

4
The utility of data-driven feature selection: re: Chu et al. 2012.数据驱动型特征选择的实用性:Chu 等人,2012。
Neuroimage. 2014 Jan 1;84:1107-10. doi: 10.1016/j.neuroimage.2013.07.050. Epub 2013 Jul 25.
6
Likelihood-based population independent component analysis.基于似然的群体独立成分分析。
Biostatistics. 2013 Jul;14(3):514-27. doi: 10.1093/biostatistics/kxs055. Epub 2013 Jan 10.

本文引用的文献

4
Classification of spatially unaligned fMRI scans.空间未对齐 fMRI 扫描分类。
Neuroimage. 2010 Feb 1;49(3):2509-19. doi: 10.1016/j.neuroimage.2009.08.036. Epub 2009 Aug 24.
5
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
8
Analyzing consistency of independent components: an fMRI illustration.分析独立成分的一致性:功能磁共振成像示例
Neuroimage. 2008 Jan 1;39(1):169-80. doi: 10.1016/j.neuroimage.2007.08.027. Epub 2007 Aug 28.
10
Consistent resting-state networks across healthy subjects.健康受试者中一致的静息态网络。
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53. doi: 10.1073/pnas.0601417103. Epub 2006 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验