Suppr超能文献

优先子集分析:提高全基因组关联研究的效能

Prioritized subset analysis: improving power in genome-wide association studies.

作者信息

Li Chun, Li Mingyao, Lange Ethan M, Watanabe Richard M

机构信息

Department of Biostatistics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

出版信息

Hum Hered. 2008;65(3):129-41. doi: 10.1159/000109730. Epub 2007 Oct 12.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) are now feasible for studying the genetics underlying complex diseases. For many diseases, a list of candidate genes or regions exists and incorporation of such information into data analyses can potentially improve the power to detect disease variants. Traditional approaches for assessing the overall statistical significance of GWAS results ignore such information by inherently treating all markers equally.

METHODS

We propose the prioritized subset analysis (PSA), in which a prioritized subset of markers is pre-selected from candidate regions, and the false discovery rate (FDR) procedure is carried out in the prioritized subset and its complementary subset, respectively.

RESULTS

The PSA is more powerful than the whole-genome single-step FDR adjustment for a range of alternative models. The degree of power improvement depends on the fraction of associated SNPs in the prioritized subset and their nominal power, with higher fraction of associated SNPs and higher nominal power leading to more power improvement. The power improvement can be substantial; for disease loci not included in the prioritized subset, the power loss is almost negligible.

CONCLUSION

The PSA has the flexibility of allowing investigators to combine prior information from a variety of sources, and will be a useful tool for GWAS.

摘要

背景

全基因组关联研究(GWAS)目前对于研究复杂疾病的遗传基础是可行的。对于许多疾病,存在一系列候选基因或区域,将此类信息纳入数据分析可能会提高检测疾病变异的能力。评估GWAS结果总体统计显著性的传统方法通过同等对待所有标记而忽略了此类信息。

方法

我们提出了优先子集分析(PSA),其中从候选区域预先选择一个标记的优先子集,并分别在优先子集中及其互补子集中进行错误发现率(FDR)程序。

结果

对于一系列替代模型,PSA比全基因组单步FDR调整更具效力。效力提高的程度取决于优先子集中相关单核苷酸多态性(SNP)的比例及其名义效力,相关SNP比例越高且名义效力越高,效力提高就越大。效力提高可能相当显著;对于未包含在优先子集中的疾病位点,效力损失几乎可以忽略不计。

结论

PSA具有允许研究人员整合来自各种来源的先验信息的灵活性,将成为GWAS的一个有用工具。

相似文献

1
Prioritized subset analysis: improving power in genome-wide association studies.
Hum Hered. 2008;65(3):129-41. doi: 10.1159/000109730. Epub 2007 Oct 12.
4
Multiple testing in genome-wide association studies via hidden Markov models.
Bioinformatics. 2009 Nov 1;25(21):2802-8. doi: 10.1093/bioinformatics/btp476. Epub 2009 Aug 4.
5
A knowledge-based weighting framework to boost the power of genome-wide association studies.
PLoS One. 2010 Dec 31;5(12):e14480. doi: 10.1371/journal.pone.0014480.
7
Power and sample size for testing associations of haplotypes with complex traits.
Ann Hum Genet. 2006 Jan;70(Pt 1):116-30. doi: 10.1111/j.1529-8817.2005.00215.x.
8
Power analysis for genome-wide association studies.
BMC Genet. 2007 Aug 28;8:58. doi: 10.1186/1471-2156-8-58.
10
Twelve New Genomic Loci Associated With Bone Mineral Density.
Front Endocrinol (Lausanne). 2020 Apr 22;11:243. doi: 10.3389/fendo.2020.00243. eCollection 2020.

引用本文的文献

1
Genetic influences on delayed reward discounting: A genome-wide prioritized subset approach.
Exp Clin Psychopharmacol. 2019 Feb;27(1):29-37. doi: 10.1037/pha0000227. Epub 2018 Sep 27.
5
Beyond the E-Value: Stratified Statistics for Protein Domain Prediction.
PLoS Comput Biol. 2015 Nov 17;11(11):e1004509. doi: 10.1371/journal.pcbi.1004509. eCollection 2015 Nov.
6
A survey on computer aided diagnosis for ocular diseases.
BMC Med Inform Decis Mak. 2014 Aug 31;14:80. doi: 10.1186/1472-6947-14-80.
8
Leveraging prior information to detect causal variants via multi-variant regression.
PLoS Comput Biol. 2013;9(6):e1003093. doi: 10.1371/journal.pcbi.1003093. Epub 2013 Jun 6.

本文引用的文献

1
A genome-wide association study identifies novel risk loci for type 2 diabetes.
Nature. 2007 Feb 22;445(7130):881-5. doi: 10.1038/nature05616. Epub 2007 Feb 11.
3
Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.
Nat Genet. 2006 Mar;38(3):320-3. doi: 10.1038/ng1732. Epub 2006 Jan 15.
4
Using linkage genome scans to improve power of association in genome scans.
Am J Hum Genet. 2006 Feb;78(2):243-52. doi: 10.1086/500026. Epub 2006 Jan 3.
5
A haplotype map of the human genome.
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.
6
High-resolution whole-genome association study of Parkinson disease.
Am J Hum Genet. 2005 Nov;77(5):685-93. doi: 10.1086/496902. Epub 2005 Sep 9.
7
Whole-genome patterns of common DNA variation in three human populations.
Science. 2005 Feb 18;307(5712):1072-9. doi: 10.1126/science.1105436.
8
Genome-wide association studies: theoretical and practical concerns.
Nat Rev Genet. 2005 Feb;6(2):109-18. doi: 10.1038/nrg1522.
9
Genome-wide association studies for common diseases and complex traits.
Nat Rev Genet. 2005 Feb;6(2):95-108. doi: 10.1038/nrg1521.
10
Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes.
Am J Hum Genet. 2004 Jul;75(1):35-43. doi: 10.1086/422174. Epub 2004 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验