Izmaylov Artur F, Scuseria Gustavo E
Department of Chemistry, Rice University, Houston, TX 77005, USA.
J Chem Phys. 2007 Oct 14;127(14):144106. doi: 10.1063/1.2790024.
We report a method for the efficient evaluation of analytic energy second derivatives with respect to in-phase nuclear coordinate displacements within Hartree-Fock and Kohn-Sham density functional theories using Gaussian orbitals and periodic boundary conditions. The use of an atomic orbital formulation for all computationally challenging steps allows us to adapt the direct space fast multipole method for the Coulomb-type infinite summations. Our implementation also exploits the local character of the exact Hartree-Fock exchange in nonconducting systems. Exchange-correlation contributions are computed using extensive screening and fast numerical quadratures. We benchmark our scheme for in-phase vibrational frequencies of a trans-polyacetylene chain, a two-dimensional boron nitride sheet, and bulk diamond with the 6-31G** basis set and various density functionals. A study of computational scaling with the size of the unit cell for trans-polyacetylene reveals subquadratic scaling for our scheme.
我们报告了一种方法,可在Hartree-Fock和Kohn-Sham密度泛函理论中,使用高斯轨道和周期性边界条件,高效评估关于同相核坐标位移的解析能量二阶导数。在所有计算具有挑战性的步骤中使用原子轨道公式,使我们能够将直接空间快速多极子方法应用于库仑型无穷求和。我们的实现还利用了非导电系统中精确Hartree-Fock交换的局部特性。使用广泛的筛选和快速数值积分来计算交换-相关贡献。我们用6-31G**基组和各种密度泛函,对反式聚乙炔链、二维氮化硼片和块状金刚石的同相振动频率方案进行了基准测试。对反式聚乙炔晶胞大小的计算缩放研究表明,我们的方案具有亚二次缩放特性。