Suppr超能文献

重复的WG/GW模体在RNAi相关组件中形成功能和进化上保守的AGO结合平台。

Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components.

作者信息

El-Shami Mahmoud, Pontier Dominique, Lahmy Sylvie, Braun Laurence, Picart Claire, Vega Danielle, Hakimi Mohamed-Ali, Jacobsen Steven E, Cooke Richard, Lagrange Thierry

机构信息

Laboratoire Génome et Développement de Plantes, Centre National de la Recherche Scientifique/Institut de Recherche pour le Développement/Université de Perpignan 5096, 66860 Perpignan Cedex, France.

出版信息

Genes Dev. 2007 Oct 15;21(20):2539-44. doi: 10.1101/gad.451207.

Abstract

Two forms of RNA Polymerase IV (PolIVa/PolIVb) have been implicated in RNA-directed DNA methylation (RdDM) in Arabidopsis. Prevailing models imply a distinct function for PolIVb by association of Argonaute4 (AGO4) with the C-terminal domain (CTD) of its largest subunit NRPD1b. Here we show that the extended CTD of NRPD1b-type proteins exhibits conserved Argonaute-binding capacity through a WG/GW-rich region that functionally distinguishes Pol IVb from Pol IVa, and that is essential for RdDM. Site-specific mutagenesis and domain-swapping experiments between AtNRPD1b and the human protein GW182 demonstrated that reiterated WG/GW motifs form evolutionarily and functionally conserved Argonaute-binding platforms in RNA interference (RNAi)-related components.

摘要

两种形式的RNA聚合酶IV(PolIVa/PolIVb)参与了拟南芥中的RNA指导的DNA甲基化(RdDM)过程。流行的模型认为,通过AGO4与最大亚基NRPD1b的C末端结构域(CTD)结合,PolIVb具有独特的功能。在这里,我们表明,NRPD1b型蛋白的扩展CTD通过富含WG/GW的区域表现出保守的AGO结合能力,该区域在功能上区分了Pol IVb和Pol IVa,并且对RdDM至关重要。AtNRPD1b与人类蛋白GW182之间的位点特异性诱变和结构域交换实验表明,重复的WG/GW基序在RNA干扰(RNAi)相关组分中形成了进化上和功能上保守的AGO结合平台。

相似文献

4
PolV(PolIVb) function in RNA-directed DNA methylation requires the conserved active site and an additional plant-specific subunit.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):941-6. doi: 10.1073/pnas.0810310106. Epub 2009 Jan 13.
5
Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis.
Nucleic Acids Res. 2010 Jul;38(13):4231-45. doi: 10.1093/nar/gkq162. Epub 2010 Mar 24.
7
Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants.
Genes Dev. 2016 Dec 1;30(23):2565-2570. doi: 10.1101/gad.289553.116. Epub 2016 Dec 16.
10
PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis.
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3145-50. doi: 10.1073/pnas.0709632105. Epub 2008 Feb 19.

引用本文的文献

2
Molecular Mechanisms Underlying the Establishment, Maintenance, and Removal of DNA Methylation in Plants.
Annu Rev Plant Biol. 2025 May;76(1):143-170. doi: 10.1146/annurev-arplant-083123-054357. Epub 2025 Mar 3.
5
Epigenetic gene regulation in plants and its potential applications in crop improvement.
Nat Rev Mol Cell Biol. 2025 Jan;26(1):51-67. doi: 10.1038/s41580-024-00769-1. Epub 2024 Aug 27.
8
Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery.
Microbiol Spectr. 2024 Jul 2;12(7):e0351323. doi: 10.1128/spectrum.03513-23. Epub 2024 May 24.
9
SPT6L, a newly discovered ancestral component of the plant RNA-directed DNA methylation pathway.
Front Plant Sci. 2024 Mar 21;15:1372880. doi: 10.3389/fpls.2024.1372880. eCollection 2024.
10
DNA-dependent RNA polymerases in plants.
Plant Cell. 2023 Sep 27;35(10):3641-3661. doi: 10.1093/plcell/koad195.

本文引用的文献

1
Argonaute proteins: mediators of RNA silencing.
Mol Cell. 2007 Jun 8;26(5):611-23. doi: 10.1016/j.molcel.2007.05.001.
2
3
Role of RNA polymerase IV in plant small RNA metabolism.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4536-41. doi: 10.1073/pnas.0611456104. Epub 2007 Mar 5.
4
Noncoding RNAs and gene silencing.
Cell. 2007 Feb 23;128(4):763-76. doi: 10.1016/j.cell.2007.02.016.
5
P bodies: at the crossroads of post-transcriptional pathways.
Nat Rev Mol Cell Biol. 2007 Jan;8(1):9-22. doi: 10.1038/nrm2080.
6
Two-step recruitment of RNA-directed DNA methylation to tandem repeats.
PLoS Biol. 2006 Nov;4(11):e363. doi: 10.1371/journal.pbio.0040363.
7
10
mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes.
Genes Dev. 2006 Jul 15;20(14):1885-98. doi: 10.1101/gad.1424106. Epub 2006 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验