Macek Boris, Gnad Florian, Soufi Boumediene, Kumar Chanchal, Olsen Jesper V, Mijakovic Ivan, Mann Matthias
Max Planck Institut for Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, 82152 Martinsried, Germany.
Mol Cell Proteomics. 2008 Feb;7(2):299-307. doi: 10.1074/mcp.M700311-MCP200. Epub 2007 Oct 15.
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is generally considered the major regulatory posttranslational modification in eukaryotic cells. Increasing evidence at the genome and proteome level shows that this modification is also present and functional in prokaryotes. We have recently reported the first in-depth phosphorylation site-resolved dataset from the model Gram-positive bacterium, Bacillus subtilis, showing that Ser/Thr/Tyr phosphorylation is also present on many essential bacterial proteins. To test whether this modification is common in Eubacteria, here we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site-resolved database of bacterial phosphoproteins to date (available at www.phosida.com) and used it to study evolutionary conservation of bacterial phosphoproteins and phosphorylation sites across the phylogenetic tree. We demonstrate that bacterial phosphoproteins and phosphorylated residues are significantly more conserved than their nonphosphorylated counterparts, with a number of potential phosphorylation sites conserved from Archaea to humans. Our results establish Ser/Thr/Tyr phosphorylation as a common posttranslational modification in Eubacteria, present since the onset of cellular life.
丝氨酸、苏氨酸和酪氨酸(Ser/Thr/Tyr)的蛋白质磷酸化通常被认为是真核细胞中主要的翻译后调控修饰。基因组和蛋白质组水平上越来越多的证据表明,这种修饰在原核生物中也存在且具有功能。我们最近报道了来自模式革兰氏阳性菌枯草芽孢杆菌的首个深度磷酸化位点解析数据集,表明许多必需的细菌蛋白质上也存在Ser/Thr/Tyr磷酸化。为了测试这种修饰在真细菌中是否普遍存在,我们在此使用一种基于磷酸肽富集和高精度质谱的最新蛋白质组学方法来分析模式革兰氏阴性菌大肠杆菌的磷酸蛋白质组。我们报道了79种大肠杆菌蛋白质上的81个磷酸化位点,Ser/Thr/Tyr磷酸化位点的分布为68%/23%/9%。尽管大肠杆菌和枯草芽孢杆菌在系统发育上存在距离,但它们的磷酸蛋白质组在大小、磷酸化蛋白质类别以及Ser/Thr/Tyr磷酸化位点分布方面显示出惊人的相似性。通过合并这两个数据集,我们创建了迄今为止最大的细菌磷酸化蛋白质磷酸化位点解析数据库(可在www.phosida.com获取),并使用它来研究细菌磷酸化蛋白质和磷酸化位点在整个系统发育树中的进化保守性。我们证明,细菌磷酸化蛋白质和磷酸化残基比其未磷酸化的对应物显著更保守,从古细菌到人类存在许多潜在的保守磷酸化位点。我们的结果表明,Ser/Thr/Tyr磷酸化是真细菌中一种常见的翻译后修饰,可以追溯到细胞生命起源之时。