Tolias Andreas S, Ecker Alexander S, Siapas Athanassios G, Hoenselaar Andreas, Keliris Georgios A, Logothetis Nikos K
Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
J Neurophysiol. 2007 Dec;98(6):3780-90. doi: 10.1152/jn.00260.2007. Epub 2007 Oct 17.
Understanding the mechanisms of learning requires characterizing how the response properties of individual neurons and interactions across populations of neurons change over time. To study learning in vivo, we need the ability to track an electrophysiological signature that uniquely identifies each recorded neuron for extended periods of time. We have identified such an extracellular signature using a statistical framework that allows quantification of the accuracy by which stable neurons can be identified across successive recording sessions. Our statistical framework uses spike waveform information recorded on a tetrode's four channels to define a measure of similarity between neurons recorded across time. We use this framework to quantitatively demonstrate for the first time the ability to record from the same neurons across multiple consecutive days and weeks. The chronic recording techniques and methods of analyses we report can be used to characterize the changes in brain circuits due to learning.
理解学习机制需要描述单个神经元的反应特性以及神经元群体间的相互作用是如何随时间变化的。为了在体内研究学习,我们需要具备跟踪电生理特征的能力,以便在较长时间内唯一地识别每个被记录的神经元。我们使用一个统计框架识别出了这样一种细胞外特征,该框架能够量化在连续记录过程中识别稳定神经元的准确性。我们的统计框架利用在四通道电极上记录的尖峰波形信息来定义不同时间记录的神经元之间的相似性度量。我们首次使用这个框架定量地证明了在连续多日和数周内从同一神经元进行记录的能力。我们所报告的慢性记录技术和分析方法可用于描述因学习导致的脑回路变化。