Suppr超能文献

用于原位同步神经记录的微刺激伪迹频谱消除

Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ.

作者信息

Gnadt James W, Echols Stanley D, Yildirim Abidin, Zhang Honglei, Paul Kush

机构信息

Department of Neurobiology & Behavior, 550 Life Sciences Bldg., Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

IEEE Trans Biomed Eng. 2003 Oct;50(10):1129-35. doi: 10.1109/TBME.2003.816077.

Abstract

A fundamental technical hurdle in systems neurophysiology has been to record the activity of individual neurons in situ while using microstimulation to activate inputs or outputs. Stimulation artifact at the recording electrode has largely limited the usefulness of combined stimulating and recording to using single stimulation pulses (e.g., orthodromic and antidromic activation) or to presenting brief trains of pulses to look for transient responses (e.g., paired-pulse stimulation). Using an adaptive filter, we have developed an on-line method that allows continuous extracellular isolation of individual neuron spikes during sustained experimental microstimulation. We show that the technique accurately and robustly recovers neural spikes from stimulation-corrupted records. Moreover, we demonstrate that the method should generalize to any recording situation where a stereotyped, triggered transient might obscure a neural event.

摘要

系统神经生理学中的一个基本技术障碍是,在使用微刺激激活输入或输出时,原位记录单个神经元的活动。记录电极处的刺激伪迹在很大程度上限制了联合刺激和记录的用途,使其仅限于使用单个刺激脉冲(例如,顺行和逆行激活),或呈现短暂的脉冲序列以寻找瞬态反应(例如,配对脉冲刺激)。我们利用自适应滤波器开发了一种在线方法,该方法能够在持续的实验性微刺激过程中对单个神经元的尖峰进行连续的细胞外分离。我们表明,该技术能够从受刺激干扰的记录中准确且稳健地恢复神经尖峰。此外,我们证明该方法应适用于任何一种记录情况,即刻板的、触发的瞬态可能会掩盖神经事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验