Roth S, Hiromi Y, Godt D, Nüsslein-Volhard C
Max-Planck-Institut für Entwicklungsbiologie, Tübingen, FRG.
Development. 1991 Jun;112(2):371-88. doi: 10.1242/dev.112.2.371.
The dorsoventral pattern of the Drosophila embryo is mediated by a gradient of nuclear localization of the dorsal protein which acts as a morphogen. Establishment of the nuclear concentration gradient of dorsal protein requires the activities of the 10 maternal 'dorsal group' genes whose function results in the positive regulation of the nuclear uptake of the dorsal protein. Here we show that in contrast to the dorsal group genes, the maternal gene cactus acts as a negative regulator of the nuclear localization of the dorsal protein. While loss of function mutations of any of the dorsal group genes lead to dorsalized embryos, loss of cactus function results in a ventralization of the body pattern. Progressive loss of maternal cactus activity causes progressive loss of dorsal pattern elements accompanied by the expansion of ventrolateral and ventral anlagen. However, embryos still retain dorsoventral polarity, even if derived from germline clones using the strongest available, zygotic lethal cactus alleles. In contrast to the loss-of-function alleles, gain-of-function alleles of cactus cause a dorsalization of the embryonic pattern. Genetic studies indicate that they are not overproducers of normal activity, but rather synthesize products with altered function. Epistatic relationships of cactus with dorsal group genes were investigated by double mutant analysis. The dorsalized phenotype of the dorsal mutation is unchanged upon loss of cactus activity. This result implies that cactus acts via dorsal and has no independent morphogen function. In all other dorsal group mutant backgrounds, reduction of cactus function leads to embryos that express ventrolateral pattern elements and have increased nuclear uptake of the dorsal protein at all positions along the dorsoventral axis. Thus, the cactus gene product can prevent nuclear transport of dorsal protein in the absence of function of the dorsal group genes. Genetic and cytoplasmic transplantation studies suggest that the cactus product is evenly distributed along the dorsoventral axis. Thus the inhibitory function that cactus product exerts on the nuclear transport of the dorsal protein appears to be antagonized on the ventral side. We discuss models of how the action of the dorsal group genes might counteract the cactus function ventrally.
果蝇胚胎的背腹模式是由作为形态发生素的背蛋白核定位梯度介导的。背蛋白核浓度梯度的建立需要10个母体“背侧组”基因的活性,其功能导致背蛋白核摄取的正调控。在这里我们表明,与背侧组基因相反,母体基因仙人掌作为背蛋白核定位的负调控因子。虽然任何一个背侧组基因的功能丧失突变都会导致胚胎背化,但仙人掌功能丧失会导致身体模式腹化。母体仙人掌活性的逐渐丧失会导致背侧模式元素的逐渐丧失,同时伴随着腹外侧和腹侧原基的扩展。然而,即使胚胎来自使用最强可用的合子致死仙人掌等位基因的生殖系克隆,它们仍然保留背腹极性。与功能丧失等位基因相反,仙人掌的功能获得等位基因会导致胚胎模式背化。遗传研究表明,它们不是正常活性的过量生产者,而是合成功能改变的产物。通过双突变分析研究了仙人掌与背侧组基因的上位关系。仙人掌活性丧失时,背突变的背化表型不变。这一结果表明仙人掌通过背蛋白起作用,没有独立的形态发生素功能。在所有其他背侧组突变背景下,仙人掌功能的降低会导致胚胎表达腹外侧模式元素,并在背腹轴的所有位置增加背蛋白的核摄取。因此,在背侧组基因功能缺失的情况下,仙人掌基因产物可以阻止背蛋白的核转运。遗传和细胞质移植研究表明,仙人掌产物沿背腹轴均匀分布。因此,仙人掌产物对背蛋白核转运的抑制作用似乎在腹侧被拮抗。我们讨论了背侧组基因的作用如何在腹侧抵消仙人掌功能的模型。