Suppr超能文献

用于热疗癌症治疗的在线反馈聚焦算法。

Online feedback focusing algorithm for hyperthermia cancer treatment.

作者信息

Cheng Kung-Shan, Stakhursky Vadim, Stauffer Paul, Dewhirst Mark, Das Shiva K

机构信息

Division of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Int J Hyperthermia. 2007 Nov;23(7):539-54. doi: 10.1080/02656730701678877.

Abstract

PURPOSE

Magnetic resonance (MR) imaging is increasingly being utilized to visualize the 3D temperature distribution in patients during treatment with hyperthermia or thermal ablation therapy. The goal of this work is to lay the foundation for improving the localization of heat in tumors with an online focusing algorithm that uses MR images as feedback to iteratively steer and focus heat into the target.

METHODS

The algorithm iteratively updates the model that quantifies the relationship between the source (antenna) settings and resulting tissue temperature distribution. At each step in the iterative process, optimal settings of power and relative phase of each antenna are computed to maximize averaged tumor temperature in the model. The MR-measured thermal distribution is then used to update/correct the model. This iterative procedure is repeated until convergence, i.e. until the model prediction and MR thermal image are in agreement. A human thigh tumor model heated in a 140 MHz four-antenna cylindrical mini-annular phased array is used for numerical validation of the proposed algorithm. Numerically simulated temperatures are used during the iterative process as surrogates for MR thermal images. Gaussian white noise with a standard deviation of 0.3 degrees C and zero mean is added to simulate MRI measurement uncertainty. The algorithm is validated for cases where the source settings for the first iteration are based on erroneous models: (1) tissue property variability, (2) patient position mismatch, (3) a simple idealized patient model built from CT-based actual geometry, and (4) antenna excitation uncertainty due to load dependent impedance mismatch and antenna cross-coupling. Choices of starting heating vector are also validated.

RESULTS

The algorithm successfully steers and focuses a tumor when there is no antenna excitation uncertainty. Temperature is raised to > or = 43 degrees C for more than about 90% of tumor volume, accompanied by less than about 20% of normal tissue volume being raised to a temperature > or = 41 degrees C. However, when there is antenna excitation uncertainty, about 40% to 80% of normal tissue volume is raised to a temperature > or = 41 degrees C. No significant tumor heating improvement is observed in all simulations after about 25 iteration steps.

CONCLUSIONS

A feedback control algorithm is presented and shown to be successful in iteratively improving the focus of tissue heating within a four-antenna cylindrical phased array hyperthermia applicator. This algorithm appears to be robust in the presence of errors in assumed tissue properties, including realistic deviations of tissue properties and patient position in applicator. Only moderate robustness was achieved in the presence of misaligned applicator/tumor positioning and antenna excitation errors resulting from load mismatch or antenna cross coupling.

摘要

目的

磁共振(MR)成像越来越多地用于在热疗或热消融治疗过程中可视化患者体内的三维温度分布。这项工作的目标是通过一种在线聚焦算法为改善肿瘤内热的定位奠定基础,该算法使用MR图像作为反馈,以迭代方式将热量引导并聚焦到目标区域。

方法

该算法迭代更新一个模型,该模型量化了源(天线)设置与所得组织温度分布之间的关系。在迭代过程的每个步骤中,计算每个天线的功率和相对相位的最佳设置,以最大化模型中的平均肿瘤温度。然后使用MR测量的热分布来更新/校正模型。重复此迭代过程,直到收敛,即直到模型预测与MR热图像一致。在一个140 MHz的四天线圆柱形微型环形相控阵中加热的人体大腿肿瘤模型用于对所提出算法的数值验证。在迭代过程中使用数值模拟温度作为MR热图像的替代物。添加标准差为0.3摄氏度且均值为零的高斯白噪声以模拟MRI测量不确定性。该算法针对第一次迭代的源设置基于错误模型的情况进行验证:(1)组织特性变异性,(2)患者位置不匹配,(3)基于CT实际几何结构构建的简单理想化患者模型,以及(4)由于负载相关阻抗失配和天线交叉耦合导致的天线激励不确定性。还对起始加热向量的选择进行了验证。

结果

当不存在天线激励不确定性时,该算法成功地引导并聚焦肿瘤。超过约90%的肿瘤体积温度升高到≥43摄氏度,同时不到约20%的正常组织体积温度升高到≥41摄氏度。然而,当存在天线激励不确定性时,约40%至80%的正常组织体积温度升高到≥41摄氏度。在大约25个迭代步骤后,在所有模拟中均未观察到肿瘤加热有显著改善。

结论

提出了一种反馈控制算法,并证明其在迭代改善四天线圆柱形相控阵热疗施加器内组织加热聚焦方面是成功的。在存在假设组织特性误差的情况下,包括组织特性和患者在施加器中的位置的实际偏差,该算法似乎具有鲁棒性。在存在由负载失配或天线交叉耦合导致的施加器/肿瘤定位未对准和天线激励误差的情况下,仅实现了中等程度的鲁棒性。

相似文献

1
Online feedback focusing algorithm for hyperthermia cancer treatment.
Int J Hyperthermia. 2007 Nov;23(7):539-54. doi: 10.1080/02656730701678877.
2
Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm.
Phys Med Biol. 2009 Apr 7;54(7):2131-45. doi: 10.1088/0031-9155/54/7/019. Epub 2009 Mar 13.
4
A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
Int J Radiat Oncol Biol Phys. 2005 Jan 1;61(1):267-77. doi: 10.1016/j.ijrobp.2004.05.009.

引用本文的文献

1
Multi-Channel RF Supervision Module for Thermal Magnetic Resonance Based Cancer Therapy.
Cancers (Basel). 2021 Feb 28;13(5):1001. doi: 10.3390/cancers13051001.
2
Current state of the art of regional hyperthermia treatment planning: a review.
Radiat Oncol. 2015 Sep 17;10:196. doi: 10.1186/s13014-015-0503-8.
3
Real-time microwave imaging of differential temperature for thermal therapy monitoring.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1787-97. doi: 10.1109/TBME.2014.2307072.
5
Simulation techniques in hyperthermia treatment planning.
Int J Hyperthermia. 2013 Jun;29(4):346-57. doi: 10.3109/02656736.2013.790092. Epub 2013 May 14.
6
Improved hyperthermia treatment control using SAR/temperature simulation and PRFS magnetic resonance thermal imaging.
Int J Hyperthermia. 2011;27(1):86-99. doi: 10.3109/02656736.2010.501509. Epub 2010 Nov 11.
9
Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm.
Phys Med Biol. 2009 Apr 7;54(7):2131-45. doi: 10.1088/0031-9155/54/7/019. Epub 2009 Mar 13.

本文引用的文献

1
Analysis of tissue and arterial blood temperatures in the resting human forearm.
J Appl Physiol. 1948 Aug;1(2):93-122. doi: 10.1152/jappl.1948.1.2.93.
2
Thermal dose optimization for ultrasound tissue ablation.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(4):913-28. doi: 10.1109/58.775658.
3
Comparison of MR-thermography and planning calculations in phantoms.
Med Phys. 2006 Oct;33(10):3912-20. doi: 10.1118/1.2348761.
5
Thermal monitoring: invasive, minimal-invasive and non-invasive approaches.
Int J Hyperthermia. 2006 May;22(3):255-62. doi: 10.1080/02656730600661149.
6
Prospective thermal dosimetry: the key to hyperthermia's future.
Int J Hyperthermia. 2006 May;22(3):247-53. doi: 10.1080/02656730600765072.
7
Hyperthermia mediated liposomal drug delivery.
Int J Hyperthermia. 2006 May;22(3):205-13. doi: 10.1080/02656730600582956.
8
Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback.
Phys Med Biol. 2006 Feb 21;51(4):827-44. doi: 10.1088/0031-9155/51/4/005. Epub 2006 Jan 25.
10
Evolving technology for thermal therapy of cancer.
Int J Hyperthermia. 2005 Dec;21(8):731-44. doi: 10.1080/02656730500331868.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验