Pivovarova Anastasia V, Chebotareva Natalia A, Chernik Ivan S, Gusev Nikolai B, Levitsky Dmitrii I
A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
FEBS J. 2007 Nov;274(22):5937-48. doi: 10.1111/j.1742-4658.2007.06117.x. Epub 2007 Oct 17.
Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.
此前,我们已经表明,表观分子量为27 kDa的小分子热休克蛋白(Hsp27)不会影响F-肌动蛋白的热解折叠,但能有效防止热变性F-肌动蛋白的聚集[Pivovarova AV,Mikhailova VV,Chernik IS,Chebotareva NA,Levitsky DI和Gusev NB(2005年),《生物化学与生物物理研究通讯》331,1548 - 1553],并推测Hsp27通过与变性肌动蛋白形成可溶性复合物来防止F-肌动蛋白的热诱导聚集。在本研究中,我们应用动态光散射、分析超速离心和尺寸排阻色谱法来检测变性肌动蛋白与重组人Hsp27突变体(Hsp27 - 3D)形成的复合物的性质,该突变体模拟了该蛋白在Ser15、Ser78和Ser82位点的天然磷酸化。我们的结果表明,这些复合物在加热时形成,并伴随着F-肌动蛋白的热变性。所有方法均表明,肌动蛋白 - Hsp27 - 3D复合物的大小随着孵育混合物中Hsp27 - 3D浓度的增加而减小,并且在Hsp27 - 3D和肌动蛋白的摩尔浓度大致相等时达到饱和。在这些条件下,复合物的流体力学半径约为16 nm,沉降系数为17 - 20 S,分子量约为2 MDa。据推测,Hsp27 - 3D在加热时与从肌动蛋白丝解离的变性肌动蛋白单体或短寡聚体结合,并通过形成相对较小且高度可溶的复合物来保护它们不发生聚集。这种机制可能解释了小分子热休克蛋白如何防止变性肌动蛋白的聚集,并以此保护细胞骨架和整个细胞免受热休克条件下大量不溶性聚集体积累所造成的损伤。