Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
School of Optometry, Indiana University, Bloomington, IN 47405, USA.
Hum Mol Genet. 2020 Jul 29;29(12):2076-2097. doi: 10.1093/hmg/ddaa096.
Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7-/- mice. Early postnatal Tdrd7-/- animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7-/- lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7-/- cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7-/- lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7-/- cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7-/- lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7-/- fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7-ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7's novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts.
RNA 颗粒成分 TDRD7(OMIM:611258)的突变可导致儿童白内障。我们应用综合方法揭示 Tdrd7-/- 小鼠白内障的分子病理学。出生后早期的 Tdrd7-/- 动物迅速发生白内障,表明关键细胞过程的全局水平破坏/失调。高通量 RNA 测序与 iSyTE 生物信息学分析相结合,确定了分子伴侣和细胞骨架调节剂 HSPB1,是 Tdrd7-/- 晶状体中高优先级下调候选物之一。蛋白质荧光二维差异凝胶电泳(2D-DIGE)-耦合质谱筛选也鉴定出 HSPB1 的下调,为其对 Tdrd7-/- 白内障形成的重要性提供了独立支持。晶状体纤维细胞通常经历核降解以保持透明性,这构成了一个挑战:它们的细胞形态(对透明性也很重要)如何在核降解后得到控制?HSPB1 参与细胞骨架的维持,其在 Tdrd7-/- 晶状体中的减少先于白内障,表明细胞骨架缺陷可能导致 Tdrd7-/- 白内障。扫描电子显微镜(SEM)显示 Tdrd7-/- 晶状体中纤维细胞形态异常。进一步的,Tdrd7-/- 纤维细胞中异常的鬼笔环肽和麦胚凝集素(WGA)染色,特别是那些表现出核降解的纤维细胞,揭示了在细胞器降解成熟阶段纤维细胞中控制 F-肌动蛋白细胞骨架和/或膜维持的不同调节机制。事实上,RNA 免疫沉淀鉴定出野生型晶状体裂解物 TDRD7 下拉物中的 Hspb1 mRNA,单分子 RNA 成像显示 TDRD7 蛋白与分化纤维细胞中细胞质 Hspb1 mRNA 的共定位,表明 TDRD7-核糖核蛋白复合物可能参与关键因子的最佳构建。最后,Hspb1 在非洲爪蟾中的敲低导致眼睛/晶状体缺陷。综上所述,这些数据揭示了 TDRD7 在提升核降解晶状体纤维细胞中细胞骨架维持的应激反应伴侣方面的新的上游作用,其扰动导致早发性白内障。