Li Yuanqing, Guan Cuntai
Inst. for Infocomm Res., Singapore.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2570-3. doi: 10.1109/IEMBS.2006.260327.
In machine learning based Brain Computer Interfaces (BCIs), it is a challenge to use only a small amount of labelled data to build a classifier for a specific subject. This challenge was specifically addressed in BCI Competition 2005. Moreover, an effective BCI system should be adaptive to tackle the dynamic variations in brain signal. One of the solutions is to have its parameters adjustable while the system is used online. In this paper we introduce a new semi-supervised support vector machine (SVM) learning algorithm. In this method, the feature extraction and classification are jointly performed in iterations. This method allows us to use a small training set to train the classifier while maintaining high performance. Therefore, the tedious initial calibration process is shortened. This algorithm can be used online to make the BCI system robust to possible signal changes. We analyze two important issues of the proposed algorithm, the robustness of the features to noise and the convergence of algorithm. We applied our method to data from BCI competition 2005, and the results demonstrated the validity of the proposed algorithm.
在基于机器学习的脑机接口(BCI)中,仅使用少量标记数据为特定受试者构建分类器是一项挑战。2005年的BCI竞赛专门解决了这一挑战。此外,一个有效的BCI系统应该具有适应性,以应对脑信号的动态变化。解决方案之一是在系统在线使用时使其参数可调整。在本文中,我们介绍了一种新的半监督支持向量机(SVM)学习算法。在这种方法中,特征提取和分类在迭代中联合进行。这种方法允许我们使用小训练集来训练分类器,同时保持高性能。因此,冗长的初始校准过程被缩短。该算法可在线使用,以使BCI系统对可能的信号变化具有鲁棒性。我们分析了所提出算法的两个重要问题,即特征对噪声的鲁棒性和算法的收敛性。我们将我们的方法应用于2005年BCI竞赛的数据,结果证明了所提出算法的有效性。