Li Yuanqing, Guan Cuntai
Neural Comput. 2006 Nov;18(11):2730-61. doi: 10.1162/neco.2006.18.11.2730.
For many electroencephalogram (EEG)-based brain-computer interfaces (BCIs), a tedious and time-consuming training process is needed to set parameters. In BCI Competition 2005, reducing the training process was explicitly proposed as a task. Furthermore, an effective BCI system needs to be adaptive to dynamic variations of brain signals; that is, its parameters need to be adjusted online. In this article, we introduce an extended expectation maximization (EM) algorithm, where the extraction and classification of common spatial pattern (CSP) features are performed jointly and iteratively. In each iteration, the training data set is updated using all or part of the test data and the labels predicted in the previous iteration. Based on the updated training data set, the CSP features are reextracted and classified using a standard EM algorithm. Since the training data set is updated frequently, the initial training data set can be small (semi-supervised case) or null (unsupervised case). During the above iterations, the parameters of the Bayes classifier and the CSP transformation matrix are also updated concurrently. In online situations, we can still run the training process to adjust the system parameters using unlabeled data while a subject is using the BCI system. The effectiveness of the algorithm depends on the robustness of CSP feature to noise and iteration convergence, which are discussed in this article. Our proposed approach has been applied to data set IVa of BCI Competition 2005. The data analysis results show that we can obtain satisfying prediction accuracy using our algorithm in the semisupervised and unsupervised cases. The convergence of the algorithm and robustness of CSP feature are also demonstrated in our data analysis.
对于许多基于脑电图(EEG)的脑机接口(BCI)而言,需要一个冗长且耗时的训练过程来设置参数。在2005年的BCI竞赛中,明确提出将减少训练过程作为一项任务。此外,一个有效的BCI系统需要适应脑信号的动态变化;也就是说,其参数需要在线调整。在本文中,我们介绍了一种扩展期望最大化(EM)算法,其中共同空间模式(CSP)特征的提取和分类是联合且迭代进行的。在每次迭代中,使用全部或部分测试数据以及上一次迭代中预测的标签来更新训练数据集。基于更新后的训练数据集,使用标准EM算法重新提取和分类CSP特征。由于训练数据集会频繁更新,初始训练数据集可以很小(半监督情况)或为空(无监督情况)。在上述迭代过程中,贝叶斯分类器的参数和CSP变换矩阵也会同时更新。在在线情况下,当受试者使用BCI系统时,我们仍然可以运行训练过程以使用未标记数据来调整系统参数。该算法的有效性取决于CSP特征对噪声的鲁棒性和迭代收敛性,本文将对此进行讨论。我们提出的方法已应用于2005年BCI竞赛的数据集IVa。数据分析结果表明,在半监督和无监督情况下,使用我们的算法可以获得令人满意的预测准确率。我们的数据分析还展示了算法的收敛性和CSP特征的鲁棒性。